PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diagnosing the thermostat using vehicle on-board diagnostic (OBD) data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermostat is a crucial component of a car's internal combustion engine's cooling system. Failure of the thermostat can result in undercooling or overheating of the engine. Undercooling may increase wear of engine components due to poor lubrication and lead to higher fuel consumption. Conversely, overheating can damage the engine. The engine coolant temperature is one of the fundamental parameters for the proper functioning of the engine. The vehicle's onboard diagnostics system was unable to detect the malfunction of the thermostat. As a consequence, fuel consumption increased, which was especially noticeable in winter. This paper evaluates the possibility of carrying out thermostat diagnostics using data obtained from the OBD system through a diagnostic interface ELM327, which is connected to the OBD-II connector and interfaced with Torque Pro software on a smartphone. Analysis of the data confirmed that the proposed diagnostic method was appropriate. Furthermore, the impact of the thermostat malfunction on different factors such as coolant temperature, cold engine warm-up time, parameters characterising thermostat cycling, and fuel consumption of the car were studied. It was found that, apart from the already mentioned decrease in coolant temperature, the thermostat hysteresis also decreased and the thermostat cycle time increased.
Czasopismo
Rocznik
Strony
art. no. 2023402
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Agarwal N., Chiara F., Canova M. Control-Oriented Modeling of an Automotive Thermal Management System. 2012 Workshop on Engine and Powertrain Control, Simulation and Modeling. The International Federation of Automatic Control Rueil-Malmaison, France, October 23-25, 2012: 392-399. https://doi.org/10.3182/20121023-3-FR-4025.00051.
  • 2. Aliramezani M., Koch Ch. R., Patrick R. Phenomenological model of a solid electrolyte NOx and O2 sensor using temperature perturbation for onboard diagnostics. Solid State Ionics 2018; 321: 62-68. https://doi.org/10.1016/j.ssi.2018.04.004.
  • 3. Basir H., Hosseini S.A., Nasrollahnezhad S., Jahangiri A., Rosen M.A. Investigation of engine's thermal management based on the characteristics of a map-controlled thermostat. International Communications in Heat and Mass Transfer 2022; 135: 106156. https://doi.org/10.1016/j.icheatmasstransfer.2022.10 6156.
  • 4. Becker M., Czech P., Gustof P., Turoń K., Jędrusik D., Urbańczyk R. Operation of the car in winter conditions. Autobusy 2017; 12: 701-708. Polish. https://doi.org/10.24136/atest.2017.658.
  • 5. Caban J., Droździel P., Ignaciuk P., Kordos P. The impact of changing the fuel dose on chosen parameters of the diesel engine start-up process. Transport Problems 2019; 14 (4): 51- 62. https://doi.org/10.20858/tp.2019.14.4.5.
  • 6. Cardenas Contreras E.M., Bandarra Filho E.P. Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range. Applied Thermal Engineering 2022; 207: 118149. https://doi.org/10.1016/j.applthermaleng.2022.118149.
  • 7. Cardenas Contreras E.M., Oliveira G.A., Bandarra Filho E.P. Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems. International Journal of Heat and Mass Transfer 2019;132:375–387. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.01 4.
  • 8. Chaurasiya R., Krishnasamy A. A single fuel port and direct injected low temperature combustion strategy to reduce regulated pollutants from a light-duty diesel engine. Fuel 2023; 335: 127114. https://doi.org/10.1016/j.fuel.2022.127114.
  • 9. Chipman J.C., Houtz W., Shillor M. Simulations of a Thermostat Model I: Approach to Steady States. Mathematical and Computer Modelling 2000; 32: 765-790. https://doi.org/10.1016/S0895-7177(00)00170-9.
  • 10. Costin M.H. On-Board Diagnostics of Vehicle Emission System Components: Review of Upcoming Government Regulation. IFAC Proceedings Volumes 1991;24 (6):497-501. https://doi.org/10.1016/S1474-6670(17)51190-8.
  • 11. Gorzelanczyk P., Jurkovic M., Kalina T., Sosedova J., Luptak V. Influence of motorization development on civilization diseases. Transport Problems 2020; 15 (3): 53-66. https://doi.org/10.21307/tp-2020-033.
  • 12. He X., Zhou Y., Liu Z., Yang Q., Sjöberg M., Vuilleumier D., Ding C.P., Liu F. Impact of coolant temperature on the combustion characteristics and emissions of a stratified-charge direct-injection spark-ignition engine fueled with E30. Fuel 2022; 309: 121913. https://doi.org/10.1016/j.fuel.2021.121913.
  • 13. Kubica G. An influence of load on temperature of combustion chamber walls in SI engine. Scientific Journal of Silesian University of Technology. Series Transport 2010; 66: 57-64. https://doi.org/10.20858/sjsutst.2010.66.6.
  • 14. Leong K.Y., Saidur R., Kazi S.N., Mamun A.H. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering 2010; 30: 2685-2692. https://doi.org/10.1016/j.applthermaleng.2010.07.019.
  • 15. Ma Q., Zhang Q., Chen Z., Liang J. The energy analysis and performance of heavy-duty diesel engine with n-butanol addition and different coolant temperature. Fuel 2022; 316: 123323. https://doi.org/10.1016/j.fuel.2022.123323.
  • 16. Mohamed E.S. Development and analysis of a variable position thermostat for smart cooling system of a light duty diesel vehicles and engine emissions assessment during NEDC. Applied Thermal Engineering 2016; 99: 358-372. https://doi.org/10.1016/j.applthermaleng.2015.12.099.
  • 17. Puškár, M., Lavčák, M., Šoltésová, M., Kopas, M. Analysis of advanced technology for combustion of homogeneous fuel mixture. Scientific Journal of Silesian University of Technology. Series Transport. 2022; 117: 211-220. https://doi.org/10.20858/sjsutst.2022.117.14.
  • 18. Ramírez J.D., Romero C.A., Mejía J.C., Quintero H.F. A methodology for non-invasive diagnosis of diesel engines through characteristics of starter system performance. Diagnostyka 2022; 23(2): 2022202. https://doi.org/10.29354/diag/147789.
  • 19. Ryniewicz A.M., Bojko Ł., Madej T. The estimation of lubricity and viscosity of engine oils. Diagnostyka 2014; 15(1): 61-66.
  • 20. Sakno, O., Medvediev, I., Kolesnikova, T. Study on the relationship between vehicle maintenance and fuel consumption. Scientific Journal of Silesian University of Technology. Series Transport. 2021; 113:163-172. https://doi.org/10.20858/sjsutst.2021.113.13.
  • 21. Salah M.H., Frick P.M., Wagner J.R., Dawson D.M. Hydraulic actuated automotive cooling systems- Nonlinear control and test. Control Engineering Practice 2009; 17: 609-621. https://doi.org/10.1016/j.conengprac.2008.10.016.
  • 22. Singh V., Rijpkema J.J., Munch K., Andersson S.B., Verhelst S. On the effects of increased coolant temperatures of light duty engines on waste heat recovery. Applied Thermal Engineering 2020; 172: 115157. https://doi.org/10.1016/j.applthermaleng.2020.115157.
  • 23. Walentynowicz J., Krakowski R. Modeling of the higher pressure cooling system for transport vehicles engines. Transport Problems 2010; 5(4): 39-47. https://doi.org/10.20858/tp.2010.5.4.5.
  • 24. Wang T., Wagner J. Advanced automotive thermal management - Nonlinear radiator fan matrix control. Control Engineering Practice 2015; 41: 113-123. https://doi.org/10.1016/j.conengprac.2015.04.004.
  • 25. Yang L., Zhang S., Wu Y., Chen Q., Niu T., Huang X., Zhang S., Zhang L., Zhou Y., Hao J. Evaluating real-world CO2 and NOX emissions for public transit buses using a remote wireless on-board diagnostic (OBD) approach. Environmental Pollution 2016; 218: 453-462. https://doi.org/10.1016/j.envpol.2016.07.025.
  • 26. Zarda F, Hussein AM, Danook AH, Mohamad B. Enhancement of thermal efficiency of nanofluid flows in a flat solar collector using CFD. Diagnostyka 2022; 23(4): 2022411. https://doi.org/10.29354/diag/156384.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60c08f47-51cc-442e-ba85-d3d67c3d8f18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.