PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural and Equilibrium Adsorption Study of the System of Waste Foundry Molding Sand/Cu (II) Ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the waste foundry molding sand which originally comes from the casting production. Adsorption of Cu (II) ions on the waste foundry molding sand was studied. Experimental data were processed using adsorption isotherms. Obtained results show that the experimental data are best described by the Langmuir isotherm. The following adsorption capacities are obtained: 7.153 mg/g to 293 K, 8.403 mg/g at 333 K and 9.208 mg/g at 343 K. The kinetics and thermodynamics of the process were analysed. The obtained results indicate that the adsorption process takes place according to the pseudo second order kinetic model with the following constants: 0.438 g/mg min at 293 K, 0.550 g/mg min at 333 K and 1.872 g/mg min at 343 K. The following values of ΔG° were obtained: − 95.49 J/mol at 293 K, − 736.99 J/mol at 333 K and − 1183.46 J/mol at 343 K. The value of ΔH° is − 4.16 kJ/mol and the value of ΔS° is 15.17 J/molK. These results were confirmed by microscopic examinations. The results indicate that the adsorption process of Cu (II) ions on waste foundry molding sand is possible. Results of microscopic examinations show the homogeneity of the surface, which is proof of the chemisorption. Cu (II) ions on the surface of the waste foundry molding sand were detected after adsorption by EDS analysis, which proves the existence of the adsorption process.
Twórcy
autor
  • University of Zagreb, Faculty of Metallurgy, Aleja Narodnih Heroja 3, 44103 Sisak, Croatia
autor
  • University of Zagreb, Faculty of Metallurgy, Aleja Narodnih Heroja 3, 44103 Sisak, Croatia
autor
  • University of Zagreb, Faculty of Metallurgy, Aleja Narodnih Heroja 3, 44103 Sisak, Croatia
Bibliografia
  • [1] J. Jorstad, M. B. Krusiak, J. O. Serra, V. L. Fay, Aggregates and Binders for Expendable Molds, chapter in ASM Handbook Casting, ASM International, Materials Park, Ohio, 15, 528 - 548 (2008).
  • [2] R. Siddique, Waste Materials and By-Products in Concrete, Springer, 2008.
  • [3] R. S. Dungan, N. H. Dees, J. Environ. Manage. 90, 539-548 (2009).
  • [4] G. Singh, R. Siddique, Constr Build Mater. 26, 416–422 (2012).
  • [5] A. Štrkalj, A. Rađenovć, J. Malina, Arch. Metall. Mater. 55 (2), 449-454 (2010).
  • [6] I. Šipuš, A. Štrkalj, Z. Glavaš, Can Metall Quart. 51, 13-18 (2014).
  • [7] E. H. Gürkan, S. Çoruh, C. Kılıcoglu, Journal of Selçuk University Natural and Applied Science, Special Issues ICOEST. 2, 289-298 (2014).
  • [8] I. Campos, J. A. Álvarez, P. Villar, A. Pascual, L. Herrero, Environ. Technol. 34, 1267 – 1281 (2013).
  • [9] E. H Gurkan, S. Çoruh, Environ. Eng. Manage. J. (Papers accepted for publication)
  • [10] S. Çoruh, E. H. Gurkan, Environ. Prog. Sustain. Energy. 33, 1086-1095, (2014).
  • [11] A. Strkalj, Z. Glavas, I. Brnardic, Chem. Biochem. Eng. Q. 27, 15-19 (2013).
  • [12] A. Strkalj, Z. Glavas, K. Maldini, Inženjerstvo okoliša. 1, 77-79 (2014).
  • [13] A. Strkalj, Z. Glavas, K. Maldini, L. J. Slokar, D. Hrsak, Machines, Technologies, Materials 4, 12-14 (2015).
  • [14] T. Lee, J. Park, J. Lee, Chemosphere. 56, 571-581(2004).
  • [15] B. R. Stern, M. Solioz, D. Krewski, P. Aggett, T. Aw, S. Baker, K. Crump, M. Dourson, L. Haber, R. Hertzberg, C. Keen, B. Meek, L. Rudenko, R. Schoeny, W. Slob, T. Starr, J. Toxicol. Environ. Health Part B 10, 157–222 (2007).
  • [16] Narodne novine (2013): Pravilnik o graničnim vrijednostima emisija otpadnih voda NN 80/2013.
  • [17] A. O. Dada, A. P. Olalekan, A. M. Olatunya and O. Dada, IOSR J Appl Chem. 3, 38-45 (2012).
  • [18] L. M. Peruchi, A. H. Fostier, S. Rath, Chemosphere. 119, 310–317 (2015).
  • [19] S. Goldberg, Equations and Models Describing Adsorption Processes in Soils, Soil Science Society of America, Road, Madison, Chemical Processes in Soils, 2005.
  • [20] J. Kim, S. Xu, Chemosphere 144, 555–563 (2016).
  • [21] G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar, J Mater Environ Sci. 3, 157-170 (2012).
  • [22] D. D. Duong, Adsorption analysis: equilibria and kinetics, Imperial College Press, London, 1998.
  • [23] S. Hong, C. Wen, J. He, F. Gan, Y. Ho, J Hazard Mater. 167, 630–633 (2009).
  • [24] Z. Bekci, Y. Seki, M. K. Yurdakoc, J. Mol. Struct. 827, 67–74 (2007).
  • [25] E. H. Gürkan1, S. Çoruh, C. Kılıçoğlu, Journal of Selçuk University Natural and Applied Science. 1, 289-298 (2014).
  • [26] T. Altun, E. Pehlivan, Clean. 35(6), 601 – 606 (2007).
  • [27] D. H. Kim, M. Shin, H. Choi, C. Seo, K. Baek, Desalination 223, 283–289 (2008).
  • [28] E. Pehlivan, S. Cetin. B. H. Yanik, J. Hazard. Mater. 135, 193-199 (2006).
  • [29] W. E Marshall L. H. Wartelle, D. E. Boler, M. M. Johns, C.A. Toles, Bioresour. Technol. 69, 263–268 (1999).
  • [30] B. Nasernejad, T. E. Zadeh, B. B. Pour, M. E. Bygi, A. Zamani, Process Biochem. 40, 1319-1322 (2005).
  • [31] E. Pehlivan, G. Arslan, Energy Sources. 28A, 1099-1112 (2006).
  • [32] Y. Sağ, A. Kaya, T. Kutsal Hydrometallurgy 50, 297-314 (1998).
  • [33] Q. Wu, J. Chen, M. Clark, Y. Yu, Appl Surf Sci. 311, 264–272 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60bec891-7e1b-4935-a576-2f91849ffe56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.