PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical reconstruction of injuries in a real world minivan-to-pedestrian collision

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to evaluate the capability of the Total Human Model for Safety (THUMS) – pedestrian model in predicting pedestrian injuries, and to investigate pedestrian injury mechanisms in minivan collisions via numerical reconstruction of a real world minivan-to-pedestrian impact case. Methods: A typical minivan-to-pedestrian collision case was selected from the In-depth Investigation of car Accidents in Changsha (IVAC) database. The THUMS middle-size adult male FE model and a minivan front FE model were then employed to represent the case participants and injuries to the pedestrian’s lower limb, thorax and head were reconstructed. Finally, the capability of the THUMS model in predicting pedestrian injuries and pedestrian injury mechanisms in minivan collisions were analyzed through comparisons between predictions and the accident data. Results: The results show that the THUMS has a good capability in predicting pedestrian thorax injuries, but a lower prediction of leg bending moment and brain strain. The extra bull bar concentrates crash load to pedestrian’s leg and raises tibia/fibula fracture risk, thorax injuries in the struck side are mainly from direct contact at the lower chest level, lung injury in the non-struck side could be caused by inertia force from the heart. Rotational acceleration shows good match with brain strain and could be the key mechanism for concussion. Conclusions: The results suggest that further improvement in biofidelity of the THUMS model is still needed. The findings also offer basic understanding on pedestrian injury mechanisms in minivan collisions.
Rocznik
Strony
21--30
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
autor
  • School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
autor
  • State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China
  • Zhejiang Key Laboratory of Automobile Safety Technology, Geely Automobile Research Institute, Ningbo, China
autor
  • Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing, China
Bibliografia
  • [1] ALVAREZ V., HALLDIN P., KLEIVEN S., The influence of neck muscle tonus and posture on brain tissue strain in pedestrian head impacts, Stapp. Car Crash J., 2014, 58, 63–101.
  • [2] CAI Z., LAN F., CHEN J., Development and validation of a human biomechanical model for rib fracture and thorax injuries in blunt impact, Comput. Method. Biomec., 2015, 18(9), 974–980.
  • [3] CHEN H., POULARD D., CRANDALL J., PANZER M., Pedestrian response with different initial positions during impact with a mid-sized sedan, Proceedings of the 24th International Technical Conference of Enhanced Safety of Vehicles (ESV), 2015, Gothenburg, Sweden; Paper No. 15-0391.
  • [4] EPPINGER R., MORGAN R., MARCUS J., Development of dummy and injury index for NHTSA’s thoracic side impact protection research program, SAE Technical Paper No. 840885, 1984.
  • [5] GENNARELLI T., WODZIN E., AIS 2005: a contemporary injury scale, Injury, 2006, 37(12), 1083–1091.
  • [6] GOLMAN A., DANELSON K., MILLER L., STITZEL J., Injury prediction in a side impact crash using human body model simulation, Accid. Anal. Prev., 2014, 64, 1–8.
  • [7] GUO W., YANG J., Effects of bull bars on head and lower extremity injuries in vehicle-pedestrian collision, Proceedings of the 3rd International Conference on Digital Manufacturing and Automation (ICDMA2012), 2012, Guilin, China.
  • [8] HUANG J., PENG Y., YANG J., OTTE D., WANG B., A study on correlation of pedestrian head injuries with physical parameters using in-depth traffic accident data and mathematical models, Accid. Anal. Prev., 2018, 119, 91–103.
  • [9] ISSHIKI T., KONOSU A., TAKAHASHI Y., Development and evaluation of the advanced pedestrian legform impactor prototype which can be applicable to all types of vehicles regardless of bumper height-Part 1: finite element model, Proceedings of the International Research Council on Biomechanics of Injury (IRCOBI) Conference, 2016, Malaga, Spain.
  • [10] KERRIGAN J., DRINKWATER D., KAM C., MURPHY D., IVARSSON B., CRANDALL J., PATRIE J., Tolerance of the human leg and thigh in dynamic latero-medial bending, Int. J. Crashworthiness, 2004, 9 (6), 607–623.
  • [11] KUPPA S., EPPINGER R., MCKOY F., NGUYEN T., PINTAR F., YOGANANDAN N., Development of side impact thoracic injury criteria and their application to the modified ES-2 dummy with rib extensions (ES-2re), Stapp. Car Crash J., 2003, 47, 189–210.
  • [12] LI G., NIE J., YANG J., A study on injuries and kinematics in pedestrian accidents involved minivan and sedan, Reports on the 5th International Conference on ESAR (Expert Symposium Accident Research), 2012, Hannover, Germany.
  • [13] LI G., YANG J., SIMMS C., The influence of gait stance on pedestrian lower limb injury risk, Accid. Anal. Prev., 2015, 85, 83–92.
  • [14] LI G., WANG F., OTTE D., CAI Z., SIMMS C., Have pedestrian subsystem tests improved passenger car front shape, Accid. Anal. Prev., 2018, 115, 143–150.
  • [15] MARGULIES S., THIBAULT L., A proposed tolerance criteria for diffuse axonal injury in man, J. Biomech., 1992, 25 (8), 917–923.
  • [16] NEWMAN J., SHEWCHENKO N., WELBOURNE E., A proposed new biomechanical head injury assessment function – the maximum power index, Stapp. Car Crash J., 2000, 44, 215–247.
  • [17] NIE J., LI G., YANG J., A study of fatality risk and head dynamic response of cyclist and pedestrian based on passenger car accident data analysis and simulations, Traffic Inj. Prev., 2015, 16(1), 76–83.
  • [18] OTTE D., HAASPER C., Characteristics on fractures of tibia and fibula in car impacts to pedestrians and bicyclistsinfluences of car bumper height and shape, Ann. Proc. Assoc. Adv. Automot. Med., 2007, 51, 63–79.
  • [19] PENG Y., YANG J., DECK C., WILLINGER R., Finite element modeling of crash test behavior for windshield laminated glass, Int. J. Impact Eng., 2013, 57(7), 27–35.
  • [20] SIMMS C., WOOD D., Pedestrian and Cyclist Impact – A Biomechanical Perspective, Springer, 2009.
  • [21] TAKAHASHI Y., KIKUCHI Y., KONOSU A., ISHIKAWA H., Development and validation of the finite element model for the human lower limb of pedestrians, SAE Technical Paper No. 2000-01-SC22.
  • [22] Toyota Motor Corporation, Documentation: Total Human Model for Safety (THUMS) AM50 pedestrian/occupant model academic version 4.02_20150527, 2015.
  • [23] WANG B., YANG J., OTTE D., PENG Y., A study of long bone fractures via reconstruction of pedestrian accident using multi-body system and lower extremity FE model, J. Mech. Med. Biol., 2015, 15(1), 1550016.
  • [24] WANG F., CAI J., WANG B., HAN Y., LI G., LI F., Investigation of prediction effectiveness of brain injury criteria on injury risk through reconstruction of pedestrian impact accidents, China Journal of Highway and Transport, 2018, 31 (4), 231–240, (in Chinese), available at: http://zgglxb.chd.edu.cn/CN/Y2018/V31/I4/231.
  • [25] WANG F., HAN Y., WANG B., PENG Q., HUANG X., MILLER K., WITTEK A., Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model, Biomech. Model. Mechan., 2018, 17, 1165–1185.
  • [26] WANG F., YU C., LI G., HAN Y., WANG B., YANG J., LAN D., A study on influence of minivan front-end design and impact velocity on pedestrian thorax kinematics and injury risk, Appl. Bionics. Biomech., 2018, 7350159, 1–8.
  • [27] WATANABE R., MIYAZAKI H., KITAGAWA Y., YASUKI T., Research of collision speed dependency of pedestrian head and chest injuries using human FE model (THUMS version 4), Proceedings of the 22nd International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV), 2011, Washington, DC, Paper No. 11-0043.
  • [28] World Health Organization, Global Status Report on Road Safety2015, Geneva, Switzerland, 2015.
  • [29] WU T., KIM T., BOLLAPRAGADA V., POULARD D., CHEN H., PANZER M., FORMAN J., CRANDALL J., PIPKORN B., Evaluation of biofidelity of THUMS pedestrian model under a wholebody impact conditions with a generic sedan buck, Traffic Inj. Prev., 2017, 18(S1), S148–S154.
  • [30] ZHANG G., CAO L., HU J., YANG K., A field data analysis of risk factors affecting the injury risks in vehicle-to-pedestrian crashes, Ann. Proc. Assoc. Adv. Automot. Med., 2008, 52, 199–214.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60b9c0f1-7a8d-427c-a207-fa79520f1382
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.