PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A bioreactor study of the metabolic repertoire and morphology of actinomycete Streptomyces rimosus ATCC 10970 under various initial concentrations of carbon and nitrogen sources

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work aims at investigating the influence of the initial concentrations of carbon (glucose) and organic nitrogen (yeast extract) sources on Streptomyces rimosus ATCC10970 secondary metabolism in the stirred tank bioreactors. Additionally, glucose utilisation, biomass formation, pH, redox potential and dissolved oxygen levels, and the morphological development of S. rimosus pseudomycelium were studied. Eighteen secondary metabolites were detected by mass spectrometry and identified with the use of the authentic standard, or putatively with the use of literature and database of secondary metabolites. Varied initial yeast extract concentration acted much stronger on the formation of secondary metabolites than glucose did. For example, oxytetracycline was not biosynthesised at high yeast extract concentration while the formation of three other metabolites was enhanced under these conditions. In the case of glucose its increasing initial concentration led to higher secondary metabolite levels with the exception of an unnamed angucycline. High initial yeast extract concentration also drastically changed S. rimosus pseudomycelial morphology from the pelleted to the dispersed one. Ultimately, the cultivation media with the varied initial levels of carbon and nitrogen sources were proved to have the marked effect on S. rimosus secondary metabolism and to be the simplest way to either induce or block the formation of the selected secondary metabolites.
Rocznik
Strony
art. no. e56
Opis fizyczny
Bibliogr. 50 poz., wykr., tab.
Twórcy
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wólczańska 213, 93-005 Łódź, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wólczańska 213, 93-005 Łódź, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wólczańska 213, 93-005 Łódź, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wólczańska 213, 93-005 Łódź, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wólczańska 213, 93-005 Łódź, Poland
Bibliografia
  • 1. Armstrong D.J., Scarbrough E., Skoog F., Cole D.L., Leonard N.J., 1976. Cytokinins in Corynebacterium fascians cultures: isolation and identification of 6-(4-Hydroxy-3-methyl-cis-2- butenylamino)-2-methylthiopurine. Plant Physiol., 58, 749–752. DOI: 10.1104/pp.58.6.749.
  • 2. Bizukojc M., Ledakowicz S., 2007. Simultaneous biosynthesis of (+)-geodin by a lovastatin-producing fungus Aspergillus terreus. J. Biotechnol., 132, 453–460. DOI: 10.1016/j.jbiotec.2007.07.493.
  • 3. Bizukojc M., Ledakowicz S., 2010. The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites. World J. Microbiol. Biotechnol., 26, 41–54. DOI: 10.1007/s11274-009-0140-1.
  • 4. Bizukojc M., Pawlak M., Boruta T., Gonciarz J., 2012. Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. J. Biotechnol., 162, 253–261. DOI: 10.1016/j.jbiotec.2012.09.007.
  • 5. Bode H.B., Bethe B., Höfs R., Zeeck A., 2002. Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem, 3, 619–627. DOI: 10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9.
  • 6. Boruta T., Ścigaczewska A., 2021. Enhanced oxytetracycline production by Streptomyces rimosus in submerged co-cultures with Streptomyces noursei. Molecules, 26, 6036. DOI: 10.3390/molecules26196036.
  • 7. Boruta T., Ścigaczewska A., Bizukojć M., 2021. “Microbial wars” in a stirred tank bioreactor: investigating the co-cultures of Streptomyces rimosus and Aspergillus terreus, filamentous microorganisms equipped with a rich arsenal of secondary metabolites. Front. Bioeng. Biotechnol., 9, 713639. DOI: 10.3389/fbioe.2021.713639.
  • 8. Casas López J.L., Sánchez Pérez J.A., Fernández Sevilla J.M., Acién Fernández F.G., Molina Grima E., Chisti Y., 2003. Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb. Technol., 33, 270–277. DOI: 10.1016/S0141-0229(03)00130-3.
  • 9. Darken M.A., Berenson H., Shirk R.J., Sjolander N.O., 1960. Production of tetracycline by Streptomyces aureofaciens in synthetic media. Appl. Microbiol., 8, 46–51. DOI: 10.1128/am.8.1. 46-51.1960.
  • 10. Del Carratore F., Hanko E.K.R., Breitling R., Takano E., 2022. Biotechnological application of Streptomyces for the production of clinical drugs and other bioactive molecules. Curr. Opin. Biotechnol., 77, 102762. DOI: 10.1016/j.copbio.2022.102762.
  • 11. Dinius A., Schrinner K., Schrader M., Kozanecka Z.J., Brauns H., Klose L., Weiß H., Kwade A., Krull R., 2023. Morphology engineering for novel antibiotics: effect of glass microparticles and soy lecithin on rebeccamycin production and cellular morphology of filamentous actinomycete Lentzea aero-colonigenes. Front. Bioeng. Biotechnol., 11, 1171055. DOI: 10.3389/fbioe.2023.1171055.
  • 12. Fu P., La S., MacMillan J.B., 2016. 1,3-Oxazin-6-one derivatives and bohemamine-type pyrrolizidine alkaloids from a marine-derived Streptomyces spinoverrucosus. J. Nat. Prod., 79, 455– 462. DOI: 10.1021/acs.jnatprod.5b00604.
  • 13. Hochstein F. A., Schach von Wittenau M., Tanner Jr. F.W., Murai K., 1960. 2-Acetyl-2-decarboxamidoöxytetracycline. J. Am. Chem. Soc., 82, 5934–5937. DOI: 10.1021/ja01507a034.
  • 14. Itoh Y., Haneishi T., Arai M., Hata T., Aiba K., Tamura C., 1978. New antibiotics, enaminomycins A, B and C. III. The structures of enaminomycins A, B and C. J. Antibiot., 31, 838–846. DOI: 10.7164/antibiotics.31.838.
  • 15. Jiang Y., Zhang J., Huang X., Ma Z., Zhang Y., Bechthold A., Yu X., 2022. Improvement of rimocidin production in Streptomyces rimosus M527 by reporter-guided mutation selection. J. Ind. Microbiol. Biotechnol., 49, kuac030. DOI: 10.1093/ jimb/kuac030.
  • 16. Jonsbu E., McIntyre M., Nielsen J., 2002. The influence of carbon sources and morphology on nystatin production by Streptomyces noursei. J. Biotechnol., 95, 133–144. DOI: 10.1016/ S0168-1656(02)00003-2.
  • 17. Jørgensen H., Nielsen J., Villadsen J., Møllgaard, H., 1995. Analy- sis of penicillin V biosynthesis during fed-batch cultivations with a high-yielding strain of Penicillium chrysogenum. Appl. Microbiol. Biotechnol., 43, 123–130. DOI: 10.1007/BF00 170633.
  • 18. Kodani S., Bicz J., Song L., Deeth R.J., Ohnishi-Kameyama M., Yoshida M., Ochi K., Challis G.L., 2013. Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Org. Biomol. Chem., 11, 4686–4694. DOI: 10.1039/c3ob40536b.
  • 19. Kowalska A., Boruta T., Bizukojć M., 2018. Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: comparative and quantitative insights into microparticle-enhanced cultivation (MPEC). Microbiol. Open, 7, e00603. DOI: 10.1002/mbo3.603.
  • 20. Li H., Hu Y., Zhang Y., Ma Z., Bechthold A., Yu X., 2023. Identification of RimR2 as a positive pathway-specific regulator of rimocidin biosynthesis in Streptomyces rimosus M527. Microb. Cell Fact., 22, 32. DOI: 10.1186/s12934-023-02039-9.
  • 21. Li Y., Lee S.R., Han E.J., Seyedsayamdost M.R., 2022. Momomycin, an antiproliferative cryptic metabolite from the oxytetracycline producer Streptomyces rimosus. Angew. Chem., 134, e202208573. DOI: 10.1002/ange.202208573.
  • 22. Lopez J.A.V., Nogawa T., Yoshida K., Futamura Y., Osada H., 2022. 2-Methylthio-N7-methyl-cis-zeatin, a new antimalaria natural product isolated from a Streptomyces culture. Biosci., Biotechnol., Biochem., 86, 31–36. DOI: 10.1093/bbb/zbab192.
  • 23. Manwaring D.G., Rickards R.W., Gaudiano G., Nicolella V., 1969. The biosynthesis of the macrolide antibiotic lucensomycin. J. Antibiot., 22, 545–550. DOI: 10.7164/antibiotics. 22.545.
  • 24. McClure R.A., Goering A.W., Ju K.-S., Baccile J.A., Schroeder F.C., Metcalf W.W., Thomson R.J., Kelleher N.L., 2016. Elucidating the rimosamide-detoxin natural product families and their biosynthesis using metabolite/gene cluster correlations. ACS Chem. Biol., 11, 12, 3452–3460. DOI: 10.1021/acschembio.6b00779.
  • 25. Metz B., Kossen N.W.F., 1977. The growth of molds in the form of pellets – a literature review. Biotechnol. Bioeng., 19, 781–799. DOI: 10.1002/bit.260190602.
  • 26. Nielsen J., Johansen C.L., Jacobsen M., Krabben P., Villadsen J. 1995. Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol. Progr., 11, 93–98. DOI: 10.1021/bp00031a013.
  • 27. Nonaka K., Tsukiyama T., Okamoio Y. Sato K., Kumasaka C., Yamamoto T., Maruyama F., Yoshikawa H., 2000. New milbemycins from Streptomyces hygroscopicus subsp. aureolacromosus: fermentation isolation and structure elucidation. J. Antiobiot., 53, 694–704. DOI: 10.7164/antibiotics.53.694.
  • 28. Ogaki M., Sonomoto K., Nakajima H., Tanaka A., 1986. Continuous production of oxytetracycline by immobilized growing Streptomyces rimosus cells. Appl. Microbiol. Biotechnol., 24, 6–11. DOI: 10.1007/BF00266277.
  • 29. Papagianni M., 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv., 22, 189–259. DOI: 10.1016/j.biotechadv.2003.09.005.
  • 30. Pethick F.E., MacFadyen A.C., Tang Z., Sangal V., Liu T.T., Chu J, Kosec G., Petkovic H., Guo M., Kirby R., Hoskisson P.A., Herron P.R., Hunter I.S., 2013. Draft genome sequence of the oxytetracycline-producing bacterium Streptomyces rimosus ATCC 10970. Genome Announc., 1, e00063-13. DOI: 10.1128/genomea.00063-13.
  • 31. Petković H., Lukežic T., Šuškovic J., 2017. Biosynthesis of oxytetracycline by Streptomyces rimosus: past, present and future directions in the development of tetracycline antibiotics. Food Technol. Biotechnol., 55, 3–13. DOI: 10.17113/ftb.55.01. 17.4617.
  • 32. Ramasamy S., Balakrishna H.S., Selvaraj U., Uppuluri K.B., 2014. Production and statistical optimization of oxytetracycline from Streptomyces rimosus NCIM 2213 using a new cellulosic substrate, Prosopis juliflora. BioRes., 9, 7209–7221. DOI: 10.15376/biores.9.4.7209-7221.
  • 33. Ścigaczewska A., Boruta T., Bizukojć M., 2021. Quantitative morphological analysis of filamentous microorganisms in cocultures and monocultures: Aspergillus terreus and Streptomyces rimosus warfare in bioreactors. Biomolecules, 11, 1740. DOI: 10.3390/biom11111740.
  • 34. Seca A.M.L., Pinto D.C.G.A., 2019. Biological potential and medical use of secondary metabolites. Medicines, 6, 66. DOI: 10.3390/medicines6020066.
  • 35. Seco E.M., Pérez-Zuñiga F.J., Rolón M.S., Malpartida F., 2004. Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces distaticus var. 108. Chem. Biol., 11, 357–366. DOI: 10.1016/j.chembiol. 2004.02.017.
  • 36. Shang N.-N., Zhang Z., Huang J.-P., Wang L., Luo J., Yang J., Peng T., Yan Y., Ma Y.-T. Huang S.-X., 2018. Glycosylated piericidins from an endophytic Streptomyces with cytotoxicity and antimicrobial activity. J. Antibiot., 71, 672–676. DOI: 10.1038/s41429-018-0051-1.
  • 37. Singh N., Rai V. Tripathi C.K.M., 2012. Production and optimization of oxytetracycline by a new isolate Streptomyces rimosus using response surface methodology. Med. Chem. Res., 21, 3140–3145. DOI: 10.1007/s00044-011-9845-4.
  • 38. Stephens C.R., Conover L.H., Hochstein F.A., Regna P.P., Pilgrim F.J., Brunings K.J., Woodward R.B., 1952. Terramycin. VIII. Structure of aureomycin and terramycin. J. Am. Chem. Soc., 74, 4976–4977. DOI: 10.1021/ja01139a533.
  • 39. Tesche S., Rösemeier-Scheumann R., Lohr J., Hanke R., Büchs J., Krull R., 2019. Salt-enhanced cultivation as a morphology engineering tool for filamentous actinomycetes: Increased production of labyrinthopeptin A1 in Actinomadura namibiensis. Eng. Life Sci., 19, 781–794. DOI: 10.1002/elsc. 201900036.
  • 40. van Santen J.A., Poynton E.F., Iskakova D., McMann E., Alsup T.A., Clark T.N., Fergusson C.H., Fewer D.P., Hughes A.H., McCadden C.A., Parra J., Soldatou S., Rudolf J.D., Janssen E.M.-L., Duncan K.R., Linington R.G., 2022. The Natural Products Atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Res., 50, D1317–D1323. DOI: 10.1093/nar/gkab941.
  • 41. Vecht-Lifshitz S.E., Sasson Y., Braun S., 1992. Nikkomycin production in pellets of Streptomyces tendae. J. Appl. Bacteriol., 72, 195–200. DOI: 10.1111/j.1365-2672.1992.tb01823.x.
  • 42. Wu C., van der Heul H.U., Melnik A.V., Lübben J., Dorrestein P.C, Minnaard A.J., Choi Y.H. van Wezel G.P., 2019. Lugdunomycin, an angucycline-derived molecule with unprecedented chemical architecture. Angew. Chem., 58, 2809–2814. DOI: 10.1002/anie.201814581.
  • 43. Wucherpfennig T., Hestler T., Krull R., 2011. Morphology engineering – osmolality and its effect on Aspergillus niger mor-
  • 44. phology and productivity. Microb. Cell Fact., 10, 58. DOI: 10.1186/1475-2859-10-58.
  • 45. Yang R., Yang J., Wang L., Huang J.-P., Xiong Z., Luo J., Yu M., Yan Y., Huang S.-X., 2017. Lorneic acid analogues from an endophytic actinomycete J. Nat. Prod., 80, 2615–2619. DOI: 10.1021/acs.jnatprod.7b00056.
  • 46. Yin P., Wang Y.-H., Zhang S.-L., Chu J., Zhuang Y.-P., Chen N., Li X.-F., Wu Y.-B., 2008. Effect of mycelial morphology on bioreactor performance and avermectin production of Streptomyces avermitilis in submerged cultivations. J. Chin. Inst. Chem. Eng., 39, 609–615. DOI: 10.1016/j.jcice.2008.04.008.
  • 47. Yin S., Wang X., Shi M., Yuan F., Wang H., Jia X., Yuan F., Sun J., Liu T., Yang K., Zhang Y., Fan K., Li Z., 2017. Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci. China Life Sci., 60, 992–999. DOI: 10.1007/s11427-017-9121-4.
  • 48. Yu L., Cao N., Wang L., Xiao C., Guo M., Chu J., Zhuang Y., Zhang S., 2012. Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes. Enzyme Microb. Technol., 50, 318–324. DOI: 10.1016/j.enzmictec.2012.03.001.
  • 49. Zhao Y., Song Z., Ma Z., Bechthold A., Yu X., 2019. Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations. J. Ind. Microbiol. Biotechnol., 46, 697–708. DOI: 10.1007/s10295-019-02146-w.
  • 50. Zygmunt W.A., 1961. Oxytetracycline formation by Streptomyces rimosus in chemically defined media. Appl. Microbiol., 9, 502–507. DOI: 10.1128/am.9.6.502-507.1961
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60b965fc-90c9-4746-aeb9-083f8dee151b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.