Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using a mathematical model that includes the influence of bottom sediments, a comprehensive study of the migration of benzene (C6H6) as a result of its continuous release into a mountain river was conducted. The adopted migration model consists of two equations that accurately describe the movement of pollutants within the river system, considering crucial factors such as flow velocity, diffusion, sorption, and desorption by river sediments. Through meticulous laboratory experiments, the distribution parameters that govern the behavior of benzene (C6H6) within the water-sediment system were successfulully determined. Leveraging advanced computer modeling techniques, intricate spatiotemporal profiles illustrating benzene (C6H6) concentrations in both water and sediments were generated. Furthermore, consistent patterns in the fluctuations of benzene (C6H6) concentrations that exhibit strong correlation with the specific composition of river sediments were identified. Importantly, these foundational relationships can be extrapolated to diverse river systems and various categories of pollutants.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
73--81
Opis fizyczny
Bilbiogr. 31 poz., rys.
Twórcy
autor
- Lviv State University of Life Safety, 35 Kleparivska St., Lviv, 79007, Ukraine
autor
- Lviv State University of Life Safety, 35 Kleparivska St., Lviv, 79007, Ukraine
autor
- Lviv State University of Life Safety, 35 Kleparivska St., Lviv, 79007, Ukraine
Bibliografia
- 1. Adams, R. H., Ojeda-Castillo, V., Guzmán-Osorio, F., Álvarez-Coronel, G., Domínguez-Rodríguez, V. 2020. Human health risks from fish consumption following a catastrophic gas oil spill in the Chiquito River, Veracruz, Mexico. Environmental Monitoring and Assessment, 192(12). DOI: 10.1007/s10661–020–08742-z
- 2. Bhattacharjee, S., Dutta, T. 2022. An overview of oil pollution and oil-spilling incidents. Advances in Oil-Water Separation, Elsevier, 3–15. DOI: 10.1016/B978–0-323–89978–9.00014–8.
- 3. Chowdury, M.S.U., Emran, T.B., Ghosh, S., Pathak, A., Alam, M.M., Absar, N., Andersson, K., Hossain, M.S. 2019. IoT Based Real-time River Water Quality Monitoring System. Procedia Computer Science, 155, 161–168. DOI: 10.1016/j.procs.2019.08.025
- 4. Derrick, B., White, P., Toher, D. 2020. Parametric and non-parametric tests for the comparison of two samples which both include paired and unpaired observations. Journal of Modern Applied Statistical Methods, 18(1), 2–23. DOI: 10.22237/jmasm/1556669520
- 5. Dodman, D., Hayward, B., Pelling, M., Broto, V.C., Chow, W., Chu, E., et al. 2022. Cities, settlements and key infra-structure. In: Portner. H-O, Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K, Alegrı ́a. A., et al. (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 907–1040. DOI: 10.1017/9781009325844.008
- 6. Hu, W., Jørgensen, S.E., Zhang, F. 2006. A vertical-compressed three-dimensional ecological model in Lake Taihu, China. Ecological Modelling, 190(3–4), 367–398. DOI: 10.1016/j.ecolmodel.2005.02.024
- 7. Karabyn, V., Sysa L., Rak Yu. 2018. Ustanovka dlia modeliuvannia protsesu zabrudnennia protichnoi richkovoi vody. (Ukraine Patent No123043). https://sis.ukrpatent.org/uk/search/detail/689884/ [in Ukrainian].
- 8. Kishore, K., Jaswal, V. 2022. Statistics Corner: Wilcoxon-Mann-Whitney Test. Journal of Postgraduate Medicine, Education and Research, 56(4), 199–201. DOI: 10.5005/jp-journals-10028–1613
- 9. Kuzyk, A., Karabyn, V., Shuryhin, V., Sushko, Y., Stepova, K., Karabyn, O. 2023. The river system pollutant migration in the context of the sudden one-time discharge with consideration of the bottom sediments influence (Case of benzene migration in the Stryi River, Ukraine). Ecological Engineering & Environmental Technology, 24(1), 46–54. DOI: 10.12912/27197050/154909
- 10. Lazaruk, Y., Karabyn, V. 2020. Shale gas in Western Ukraine: Perspectives, resources, environmental and technogenic risk of production. Pet Coal, 62(3), 836–844.
- 11. Loboichenkoa, V., Leonova, N., Shevchenko, R., et al. 2021. Assessment of the impact of natural and anthropogenic factors on the state of water objects in urbanized and non-urbanized areas in Lozova district (Ukraine). Ecological Engineering & Environmental Technology, 22(2), 59–66. DOI: 10.12912/27197050/133333
- 12. Loboichenkob, V., Leonova, N., Shevchenko, R., Strelets, V., Morozov, A., Pruskyi, A., Avramenko, O., Bondarenko, S. 2021. Spatiо-temporal study of the ecological state of water bodies located within the detached objects of the urbanized territory of Ukraine. Ecological Engineering & Environmental Technology, 22(6), 36–44. DOI: 10.12912/27197050/141610
- 13. Loomis, D., Guyton, K.Z., Grosse, Y., et al. 2017. Carcinogenicity of benzene. Lancet Oncol., 18(12), 1574–1575. DOI: 10.1016/S1470–2045(17)30832-X
- 14. Malovanyy, M., Shandrovych, V., Malovanyy, A., Polyuzhyn, I. 2016. Comparative analysis of the effectiveness of regulation of aeration depending on the quantitative characteristics of treated sewage water. Journal of Chemistry, 2016, article ID 6874806. DOI: 10.1155/2016/6874806
- 15. MVV No 081/12–0645–09 Vody zvorotni, poverkhnevi, pidzemni. Metodyka vykonannia vymiriuvan masovoi kontsentratsii naftoproduktiv hra vimetrychnym metodom. Retrieved from: http://online.budstandart.com/ua/catalog/docpage.html?id_doc=76578 [in Ukrainian].
- 16. Odnorih, Z., Manko, R., Malovanyy, M., Soloviy, K. 2020. Results of surface water quality monitoring of the western Bug River Basin in Lviv Region. Journal of Ecological Engineering, 21(3), 18–26. DOI: 10.12911/22998993/118303
- 17. Park,J., Kim, K.T., Lee,W.H. 2020. Recent advances in information and communications technology (ICT) and sensor technology for monitoring Water Quality. Water, 12(2), 510. DOI: 10.3390/w12020510
- 18. Pochaievets, О., Rozlach, Z. 2014. Floods on the rivers of the Stryi basin and their influence on the morphological changes of the riverbeds. Reclamation and water management, (101), 259–272.
- 19. Posthuma, L., Zijp, M.C., De Zwart, D., Van de Meent, D., Globevnik, L., Koprivsek, M., Focks,A., Van Gils, J., & Birk, S. 2020. Chemical pollution imposes limitations to the ecological status of European surface waters. Scientific Reports, 10(1). DOI: 10.1038/s41598–020–71537–2
- 20. Robson, B., Hamilton, D. 2004. Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling, 174(1–2), 203–222. DOI: 10.1016/j.ecolmodel.2004.01.006
- 21. Romashchenko, M., Savchuk, D. 2002. Water elements. Carpathian floods. Statistics, reasons, regulation. Agrarian science, 304.
- 22.Rudobashta, S., Kartashov, E. 1993. Diffusion in chemical-technological processes. Сhemistry, Moscow.
- 23. Rusyn, I., Moroz, O., Karabyn, V., Kulachkovs’ki, O. 2003. Biodegradation of oil hydrocarbons by Candida yeast. Journal of microbiology, 65(6), 36–42.
- 24. Sherwood, T.K., Pigford, R.L., Wilke, C.R. 1975. Mass transfer. McGraw-Hill, New York.
- 25. Shevchenko, R., Strelets, V., Loboichenko, V., Pruskyi, A., Myroshnyk, O., Kamyshentsev, G. 2021. Review of up-to-date approaches for extinguishing oil and petroleum products. SOCAR Proceedings, 1, 169–174. DOI: 10.5510/OGP2021SI100519
- 26. Shmandiy, V., Bezdeneznych, L., Kharlamova, О., Svjatenko, A., Malovanyy, M., Petrushka, K., Polyuzhyn, I. 2017. Methods of salt content stabilization in circulating water supply systems. Chemistry & Chemical Technology, 11(2), 242–246. DOI:10.23939/chcht11.02.242
- 27. Sirenko, H., Kyrychenko, V., Sulyma, I. 2017. Physico-chemistry of fuel and lubricant materials. Suprun V. P., Ivano-Frankivsk.
- 28. Starodub, Y., Karabyn, V., Havrys, A., Shainoga, I., Samberg, A. 2018. Flood risk assessment of Chervonograd mining-industrial district. Proc. Remote Sensing for Agriculture, Ecosystems, and Hydrology XX. SPIE, 10783. DOI: 10.1117/12.2501928
- 29. Susidko, М., Lukianets, О. 1998. Possibilities of estimating the river flow in the Carpathians for the coming years, taking into account its long-term fluctuations. Scientific works of the UkrRHMI, 246, 46–55.
- 30. Volosetskyi, B., Shpyrnal, T. 2013. Study of transportation of gravel and pebble masses in the course of Stryi River according to geodesic monitoring data. Geodesy, cartography and aerial photography, 77, 115–121.
- 31. Wang, X., Wang, Y., Guo, F., Wang, D., Bai, Y. 2020. Physicochemical characteristics of particulate matter emitted by diesel blending with various aromatics. Fuel, 275, 117928. DOI: 10.1016/j.fuel.2020.117928
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60b1b4b5-fbec-4795-8bae-be792f418934