PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of a Spherical Titanium Powder by Combined Combustion Synthesis and DC Plasma Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Combustion synthesis is capable of producing many types of refractory and ceramic materials, as well as metals, with a relatively lower cost and shorter time frame than other solid state synthetic techniques. TiO2 with Mg as reductant were dry mixed and hand compacted into a 60 mm diameter mold and then combusted under an Ar atmosphere. Depending on the reaction parameters (Mg concentration 2 ≤ α ≤ 4), the thermocouples registered temperatures between 1160°C and 1710°C . 3 mol of Mg gave the optimum results with combustion temperature (Tc) and combustion velocity (Uc) values of 1372°C and 0.26 cm/s respectively. Furthermore, this ratio also had the lowest oxygen concentration in this study (0.8 wt%). After combustion, DC plasma treatment was carried out to spheroidize the Ti powder for use in 3D printing. The characterization of the final product was performed using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and N/O analysis.
Twórcy
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
  • Department of Advanced Materials Engineering, IN-HA University, Incheon, South Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
  • Department of Rare Metals Engineering, University of Science and Technology, Daejeon, South Korea
autor
  • Department of Advanced Materials Engineering, IN-HA University, Incheon, South Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
  • Department of Advanced Materials Engineering, IN-HA University, Incheon, South Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
autor
  • Department of Advance Material Engineering, Chungnam National University, Daejeon, South Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
  • Department of Rare Metals Engineering, University of Science and Technology, Daejeon, South Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Eleventh Floor, Get-Pearl Tower, Gaetbeol-Ro 12, Yeonsu-Gu, Incheon, South Korea
Bibliografia
  • [1] M. Ribeiro, M. Moreira, J. Ferreira, J. Mater. Proc. Tech. 143, 458 (2003).
  • [2] M. Rahman, Z. Wang, Y. Wong, JSME Int. J. Series C 49, 11 (2006).
  • [3] K. H. Kramer, in: P. Lacombe, R. Tricot, G. Beranger (Eds.), Proceedings of the 6th World Conference on Titanium, Cannes521 (1988).
  • [4] Y. M. Kim, Y. B. Song, S. H. Lee, Y. S. Kwon, J. Kor. Powd. Met. Inst. 21, 4 (2014).
  • [5] K. F. Leong, C.M. Cheah, C.K. Chua, Biomater. 24, 2363 (2003).
  • [6] S. J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Mater. Sci. Eng. C. 23, 611 (2003).
  • [7] A. Woesz, M. Rumpler, J. Stampfl, F. Varga, N. Fratzl-Zelman, P. Roschger, K. Klaushofer, P. Fratzl, Mater. Sci. Eng. C. 25, (2005).
  • [8] T. Boland, A. Ovsianikov, B.N. Chickov, A. Doraiswamy, R.J. Narayan, W.Y. Yeong, K.F. Leong, C.K. Chua, Adv. Mater. Process. 165, 51 (2007).
  • [9] O. L. A. Harrysson, O. Cansizoglu, D.J. Marcellin-Little, D.R. Cormier, H.A. West II, Mater. Sci. Eng. C. 28, 366 (2008).
  • [10] W. J. Kroll, Trans. Electrochem. Soc. 78, 35 (1940).
  • [11] J. Dawes, R. Bowerman, R. Trepleton, Johnson Matthey Technol. Rev. 59, 243 (2015).
  • [12] F. H. Froes, M. N. Gungor, M. Ashraf Imam, JOM 28 (2007).
  • [13] H. H. Nersisyan, H. I. Won, C. W. Won, J. H. Kim, J. Chem. Eng. 235, 67 (2014).
  • [14] J. Gambogi, S.J. Gerdemann, DOE/ARC (1999).
  • [15] D. J. Fray, G. Z. Chen, T. W. Farthing, Nature 407 (6802), 361 (2000).
  • [16] R. O. Suzuki, K. Ono, TMS Yazawa International Symposium (2003).
  • [17] A. G. Merzhanov, J. Mat. Proc. Tech. 56, 222 (1996).
  • [18] J. J. Moore, H. J. Feng, Prog. Mater. Sci. 39, 275 (1995).
  • [19] H. H. Nersisyan, J. H. Lee, C. W. Won, Mater. Res. Bull. 38, 1135 (2003).
  • [20] T. S. Azatyan, V. M. Maltsev, A. G. Merzhanov, V. A. Seieznev, Com. Explos. Shock Waves, 15, 35 (1979).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60b16223-71ef-4fa3-a6a8-2c018f380d6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.