PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Constitutive modelling of damage evolution and martensitic transformation in 316L stainless steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the constitutive model, derived with the use of thermodynamic of irreversible processes framework is presented. The model is derived under the assumption of small strains. Plastic strain induced martensitic phase transformation is considered in the austenitic matrix where the volume fraction of the martensite is reflected by a scalar parameter. The austenitic matrix is assumed as the elastic-plastic material and martensitic phase is assumed as randomly distributed and randomly oriented inclusions. Both phases are affected by damage evolution but there is no distinction in the model between damage in austenite and martensite.
Rocznik
Strony
125--132
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Applied Mechanics, Faculty of Mechanical Engineering, Cracow University of Technology, Al. Jana Pawla II 37, 31-864 Cracow, Poland
Bibliografia
  • 1. Abu Al Rub R.K, Voyiadjis G.Z. (2003), On the coupling of anisotropic damage and plasticity models for ductile materials, International Journal of Plasticity, 40, 2611-2643.
  • 2. Baffie, N., Stolarz, J. and Magnin, T. (2000), Influence of straininduced martensitic transformation on fatigue short crack behaviour in an austenitic stainless steel, Matériaux & Techniques, 5-6, 57-64.
  • 3. Beese A.M, Mohr D. (2011), Effect of stress triaxiality and lode angle on the kinetics of strain-induced austenite-to-martensite transformation, Acta Materialia, 59(7), 258-2600.
  • 4. Besson J., Cailletaud G., Chaboche J.-L., Forest S. (2010), NonLinear Mechanics of Materials, Springer.
  • 5. Bonora N. (1997), A nonlinear CDM model for ductile failure, Engineering Fracture Mechanics, 58(1-2), 11-28.
  • 6. Chaboche, J. (2008), A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24, 1642- 1693.
  • 7. Cherkaoui M., Berveiller M., Lemoine X. (2000), Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels, International Journal of Plasticity, 16, 1215-1241.
  • 8. Cherkaoui M., Berveiller M., Sabar H. (1998), Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals, International Journal of Plasticity, 14, 7, 597-628.
  • 9. Diani J.M, Sabar H., Berveiller M. (1995), Micromechanical modelling of the transformation induced plasticity (TRIP) phenomenon in steels, International Journal of Engineering Science, 33, 1921-1934.
  • 10. Diani J.M., Parks D.M. (1998), Effects of strain state on the kinetics of strain induced martensite in steels, Journal of the Mechanics and Physics of Solids, 46(9), 1613-1635.
  • 11. Egner H., Skoczeń B. (2010), Ductile damage development in twophase materials applied at cryogenic temperatures, International Journal of Plasticity, 26, 488-506.
  • 12. Egner H., Skoczeń B., Ryś M. (2015a), Constitutive and numerical modeling of coupled dissipative phenomena in 316L stainless steel at cryogenic temperatures, International Journal of Plasticity, 64, 113-133.
  • 13. Egner H., Skoczeń B., Ryś M. (2015b), Constitutive modeling of dissipative phenomena in austenitic metastable steels at cryogenic temperatures, Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, Advanced Structured Materials, 57, Springer International Publishing.
  • 14. Fischer F.D, Schlögl S.M. (1995), The influence of material anisotropy on transformation induced plasticity in steel subject to martensitic transformation, Mechanics of Materials, 21, 1-23.
  • 15. Fischer F.D., Reisner G., Werner E., Tanaka K., Cailletaud G., Antretter T. (2000), A new view on transformation induced plasticity (TRIP), International Journal of Plasticity, 16(1-8), 723-748.
  • 16. Fisher F.D., Reisner G. (1998), A criterion for the martensitic transformation of a microregion in an elastic-plastic material, Acta Materialia 46, 2095-2102.
  • 17. Garion C., Skoczeń B. (2003), Combined Model of Strain – Induced Phase Transformation and Orthotropic Damage in Ductile Materials at Cryogenic Temperatures, International Journal of Damage Mechanics, 12(4), 331-356.
  • 18. Hallberg H., Hakansson P., Ristinmaa M. (2010), Thermomechanically coupled model of diffusionless phase transformation in austenitic steel, International Journal of Solids and Structures, 47, 1580-1591.
  • 19. Hallberg H., Hakansson P., Ristinmaa M. (2007), A constitutive model for the formation of martensite in austenitic steels under large strain plasticity, International Journal of Plasticity, 23, 1213-1239.
  • 20. Heung N.H., Chang G.L, Chang-Seok O., Tae-Ho L., Sung-Joon K., (2004), A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel, Acta Materialia, 52(17), 5203-5214.
  • 21. Iwamoto T. (2004) Multiscale computational simulation of deformation behavior of TRIP steel with growth of martensitic particles in unit cell by asymptotic homogenization method. International Journal of Plasticity 20(4-5), 841-869.
  • 22. Ju J. (1989), On Energy – Based Coupled Elastoplastic Damage Theories: Constitutives Modelling and Computational Aspects, International Journal of Solids and Structures, 25(7), 803-833.
  • 23. Kachanov L.M. (1958), On rupture time under condition of creep, Izvestia Akademi Nauk SSSR, Otd. Tekhn. Nauk., No. 8, 26-31 (in Russian).
  • 24. Kintzel O., Khan S., Mosler J. (2010), A novel isotropic quasi-brittle damage model applied to LCF analyses of Al2024, International Journal of Fatigue, 32, 1984-1959.
  • 25. Kubler R.F., Berveiller M., Buessler P. (2011), Semi phenomenological modeling of the behavior of TRIP steels, International Journal of Plasticity, 27, 299-327.
  • 26. Le Pecheur, A. (2008), Fatigue thermique d’un acier inoxydable austénitique: influence de l’état de surface par une approche multi- échelles, PhD Thesis, École Centrale des Arts et Manufactures, École Centrale Paris.
  • 27. Lemaitre H. (1992), A course on damage mechanics. SpringerVerlag, Berlin and New York.
  • 28. Levitas V.I., Idesman A.V., Olson G.B. (1999), Continuum modeling of strain-induced martensitic transformation at shear band intersections, Acta Materialia 47(1), 219-233.
  • 29. Mahnken R., Schneidt A. (2010), A thermodynamics framework and numerical aspects for transformation-induced plasticity at large strains, Archives of Applied Mechanics, 80, 229-253.
  • 30. Murakami S. (2012), Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture, Springer: Dordrecht, Heidelberg, London, New York.
  • 31. Narutani T., Olson G.B., Cohen M. (1982), Constitutive flow relations for austenitic steels during strain-induced martensitic transformation, Journal de Physique, Colloque C4, 12, 43, 429-434.
  • 32. Olson G.B., Cohen M. (1975) Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions, 6A, 791-795.
  • 33. Rabotnov Yu. N. (1968), Creep rupture. In: Hetenyi M., Vincenti M. (eds) Proceedings of applied mechanics conference. Stanford University. Springer, Berlin, 342-349.
  • 34. Rabotnov Yu. N. (1969), Creep problems in structural members (North-Holland Series in Applied Mathematics and Mechanics). North-Holland Publishing Company, Amsterdam/London.
  • 35. Ryś M. (2014), Constitutive modelling and identification of parameters of 316L stainless steel at cryogenic temperatures, Acta Mechanica et Automatica, 8, 3, 136-140.
  • 36. Ryś M. (2015), Modeling of damage evolution and martensitic transformation in austenitic steel at cryogenic temperature, Archive of Mechanical Engineering, LXII, 4.
  • 37. Saanouni K. (1988), On the cracking analysis of the elastoplastic media by the theory of continuum damage mechanics, PhD Thesis (in French), Universite de Technologie de Compiegne, France.
  • 38. Saanouni K. (2012), Damage mechanics in metal forming: Advanced modeling and numerical simulation, ISTE/Wiley, London.
  • 39. Saanouni K., Forster C., Ben Hatira F. (1994) On the anelastic flow with damage, International Journal of Damage Mechanics, 3, 140–169.
  • 40. Santacreu P.O., Glez J.C., Chinouilh G., Frohlich T. (2006), Behaviour model of austenitic stainless steels for automotive structural parts, Steel Research International, 77(9-10), 714.
  • 41. Skoczeń B., Bielski J., Tabin J. (2014), Multiaxial constitutive model of discontinuous plastic flow at cryogenic temperatures, International Journal of Plasticity, 55, 198-218.
  • 42. Stolarz J., Baffie N., Magnin T. (2001), Fatigue short crack behavior in metastable austenitic stainless steels with different grain size, Materials Science and Engineering A, 319-321, 521-526.
  • 43. Stringfellow, R.G., Parks, D.M., Olson, G.B. (1992) Constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metallurgica, 40, 7, 1703-1716
  • 44. Suiker A.S.J., Turteltaub S. (2006), Crystalline damage development during martensitic transformation, European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006.
  • 45. Suiker A.S.J., Turteltaub S. (2007), Numerical modeling of transformation-induced damage and plasticity in metals. Modeling and Simulation in Materials Science and Engineering, 15, 147-166.
  • 46. Tomita Y, Iwamoto T. (1995) Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties. International Journal of Mechanical Sciences, 37, 1295–1305.
  • 47. Tomita Y., Iwamoto T. (2001) Computational prediction of deformation behavior of TRIP steels under cyclic loading. International Journal of Mechanical Sciences, 43(9), 2017-2034.
  • 48. Ziętek G., Mróz Z. (2011), On the hardening rule for austenite steels accounting for the strain induced martensitic transformation, International Journal of Structural Changes in Solids, 3, 3, 21-34.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60af510f-a795-4fd1-ad0f-e525016768ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.