PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the applicability of basalt fiber-reinforced epoxy composites in vehicle construction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a description of the properties of basalt fibers and polymer composites containing basalt fibers. Basalt fibers are seen as a potentially beneficial component in composite development, especially for vehicles in transport applications. The article also presents the results of the mechanical properties investigation of the glass-epoxy and basalt-epoxy composites. The composites for testing were prepared using the popular hand lay-up method. The samples were cut from prepared plates using abrasive water jet methods. The obtained samples were tested to evaluate their flexural strength and interlaminar sharing strength. The achieved mechanical properties were compared.
Słowa kluczowe
Czasopismo
Rocznik
Strony
43--53
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering; 8 Krasinskiego, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering; 8 Krasinskiego, 40-019 Katowice, Poland
Bibliografia
  • 1. Balaji, K.V. & Shirvanimoghaddam, K. & Rajan, G.S. & Ellis, A.V. & Naebe, M. Surface treatment of Basalt fiber for use in automotive composites. Materials Today Chemistry. 2020. Vol. 17. DOI: https://doi.org/10.1016/j.mtchem.2020.100334.
  • 2. Wennberg, D. Multi-Functional Composite Design Concepts for Rail Vehicle Car Bodies. PhD Thesis. Stockholm, Sweden. 2013.
  • 3. Zenkert, D. & Battley, M. Foundations of fibre composites: notes for the course: Composite lightweight structures. Kgs. Lyngby. DTU. 2006.
  • 4. Preto, R. Mechanical Behavior of Basalt Fiber Reinforced Composites. Instituto Superior Técnico. Available at: https://fenix.tecnico.ulisboa.pt/downloadFile/395145534338.
  • 5. Das, S. The life-cycle impacts of aluminum body-in-white automotive material. JOM. 2000. Vol. 52(8). P. 41-44.
  • 6. Akbari, M.K. & Shirvanimoghaddam, K. & Hai, Z. & Zhuiykov, S. & Khayyam, H. Al-TiB2 micro/nanocomposites: Particle capture investigations, strengthening mechanisms and mathematical modelling of mechanical properties. Materials Science and Engineering: A. 2017. Vol. 682. P. 98-106.
  • 7. Akbari, M.K. & Shirvanimoghaddam, K. & Hai, Z. & Zhuiykov, S. & Khayyam, H. Nano TiB2 and TiO2 reinforced composites: a comparative investigation on strengthening mechanisms and predicting mechanical properties via neural network modeling. Ceramics International. 2017. Vol. 43(18). P. 16799-16810.
  • 8. Ghasali, E. & Sangpour, P. & Jam, A. & Rajaei, H. & Shirvanimoghaddam, K. & Ebadzadeh, T. Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Archives of Civil and Mechanical Engineering. 2018. Vol. 18. No. 4. P. 1042-1054.
  • 9. Witik, R.A. & Payet, J. & Michaud, V. & Ludwig, C. & Månson, J.E. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Composites Part A: Applied Science and Manufacturing. 2011. Vol. 42. No. 11. P. 1694-1709.
  • 10.Sloan J. Composites end markets: Automotive (2022). Available at: https://www.compositesworld.com/articles/composites-end-markets-automotive-2022.
  • 11.Use of Composites Is on the Rise in the Transportation Industry. Available at: https://www.mvpind.com/use-of-composites-is-on-the-rise-in-the-transportation-industry/.
  • 12.Kim, J.-S. & Kim, N.-P. & Han, S.-H. Optimal stiffness design of composite laminates for a train carbody by an expert system and enumeration method. Composite Structures. 2005. Vol. 68. No. 2. P. 147-156.
  • 13.Shin, K.B. & Hahn, S.H. Evaluation of the structural integrity of hybrid railway carriage structures including the ageing effects of composite materials. Composite Structures. 2005. Vol. 68. No. 2. P. 129-137.
  • 14.Kim, S. & Kang, S. & Kim, C. & Shin, K.B. Analysis of the composite structure of tilting train express (TTX). ICCM15. Republic of South Africa. 2005.
  • 15.Park, J.M. & Shin, W.G. & Yoon, D.J. A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibers by means of the fragmentation and acoustic emission techniques. Composites Science and Technology. 1999. Vol. 59. P. 355-370.
  • 16.Perepelkin, K.E. Polymer fibrous composites, their main types, production principles and properties. Chemical fibers. 2006. Vol. 37. P. 41-50.
  • 17.Chikhradze, N.M. & Japaridze, L.A. &. Abashidze, G.S. Properties of basalt plastics and of composites reinforced by hybrid fibers in operating conditions. Composites and Their Applications. 2011. P. 221-242.
  • 18.Fiore, V. & Scalici, T. & Di Bella, G. & Valenza, A. A review on basalt fiber and its composites. Composites Part B: Engineering. 2015. Vol. 74. P. 74-94.
  • 19.Chafiq, J. & Oucht, I. & Ait El Fqih, M. Investigations of tensile behavior of basalt / glass / carbon / hybrid fiber composite. Materials Today: Proceedings. 2022. Vol. 52. Part 1. P. 53-59.
  • 20.Militký, J. & Kovačič, V. & Rubnerová, J. Influence of thermal treatment on tensile failure of basalt fibers. Engineering Fracture Mechanics. 2002. Vol. 69. No. 9. P. 1025-1033.
  • 21.Militky, J. & Kovacic, V. Ultimate mechanical properties of basalt filaments. Textile Research Journal. 1996. Vol. 66. No. 4. P. 225-229.
  • 22.Novitskii, A.G. High temperature heat insulating materials based on fibers from basalt type rock materials. Refract Ind Ceram. 2004. Vol. 45. P. 144-146.
  • 23.Deak, T. & Czigany, T. Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Textile Research Journal. 2009. Vol. 79. No. 7. P. 645-651.
  • 24.Kim, J.S. & Lim, J.H. & Huh, Y. Melt-spinning basalt fibers based on dielectric heating and steady-state process characteristics. Fibers Polym. 2013. Vol. 14. P. 1148-1156.
  • 25.Li, Z. & Ma, J. & Ma, H. & Xu, X. Properties and Applications of Basalt Fiber and Its Composites. IOP Conference Series: Earth and Environmental Science. 2018. Vol. 186(2). Available at: https://iopscience.iop.org/article/10.1088/1755-1315/186/2/012052/pdf.
  • 26.Jongsung, S. & Cheolwo, P. & Do Young, M. Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering. 2005. Vol. 36. No. 6-7. P. 504-512.
  • 27.Schut, J.H. Lava-Based Fibers Reinforce Composites. Plastic Technology. Available at: https://www.ptonline.com/articles/lava-based-fibers-reinforce-composites.
  • 28.Parnas, R. & Shaw, M. & Liu, Q. Basalt Fiber Reinforced Polymer Composites. Prepared for The New England Transportation Consortium. Institute of Materials Science, University of Connecticut. 2007.
  • 29.Vinay, S.S. & Sanjay, M.R. & Siengchin, S. & Venkatesh, C.V. Basalt fiber reinforced polymer composites filled with nano fillers: A short review. Materials Today: Proceedings. 2022. Vol. 52. Part 5. P. 2460-2466.
  • 30.Artemenko, S.E. Polymer Composite Materials Made from Carbon, Basalt, And Glass Fibers. Structure and Properties. Fiber Chemistry. 2003. Vol. 35(3). P. 226-229.
  • 31.Stabik, J. & Dybowska, A. & Chomiak, M. Polymer composites filled with powders as polymer graded materials. Journal of Achievements in Materials and Manufacturing Engineering. 2010. Vol. 43(1). P. 153-161.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60ad35f8-9e29-427e-bce6-af51b861ef19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.