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An extended second order finite difference method on a variable mesh is proposed for the solution of a
singularly perturbed boundary value problem. A discrete equation is achieved on the non uniform mesh by
extending the first and second order derivatives to the higher order finite differences. This equation is solved
efficiently using a tridiagonal solver. The proposed method is analysed for convergence, and second order
convergence is derived. Model examples are solved by the proposed scheme and compared with available methods
in the literature to uphold the method.
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1. Introduction

The requirement for singularly perturbed boundary value problems (SPBVP) is useful in the various
fields of science and engineering such as nuclear engineering, fluid mechanics, control theory, elasticity,
optimal control, reaction diffusion process and many other fields (Bigge and Bohl [1]; Ackerberg and O’
Malley [2]; Ardema, [3]). In most of the numerical schemes, the presence of sharp boundary layers generates
difficulty when the coefficient of highest derivative tends to zero. For example, as the perturbation parameter
tends to zero, there will be a discontinuous limit in the solution of singularly perturbed problem and interior
layers appear. Hence, there is necessity to frame parameter (value € ) independent accuracy based on numerical
schemes which convergent € - uniformly. The very small perturbation parameter is responsible for arising
computational difficulties in the numerical treatment of singularly perturbed differential equations.
Mohammadi, [4] discussed a numerical method for SPBVP using adaptive cubic spline on the uniform mesh.
The convection-diffusion boundary value problems are presented with two small parameters using a non-
polynomial spline technique in [5]. The authors in [6] have given a variable mesh difference scheme of second
order for the solution of SPBVP. Surla K. et al. [7] applied a quadratic spline collocation method to solve a
SPBVP. Doolan et al. [8] elucidated several uniform numerical methods for the solution of SPBVPs. The
authors in [9] suggested the finite difference methods for second order singularly perturbed delay differential
equations and revealed the size effect of the delay argument, the coefficient of the delay term. Hemker and
Miller [10], described briefly the numerical analysis of a singular perturbation problem. The authors in [11]
made a numerical analysis of singularly perturbed delay differential equations with layer behavior. O'Malley
et al. [12] explained briefly singular perturbations. Miller et al. [13] worked on fitted numerical methods for
singular perturbation problems. The researchers in [14] employed a cubic spline compression method, whereas
the authors in [15] used finite difference methods based on a ¢ -uniformly convergent fitted mesh.
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In this paper section 2, gives a description of the problem. In section 3, the method of solution is
discussed. The convergence analysis is given in section 4. The numerical examples, graphs, results along with
the discussions and conclusions are given in the subsequent sections.

2. Description of the problem

Consider a singular perturbed differential equation as:
eu”(s)+a(s)u’(s)+b(s)u(s)=1(s), 0<s<lI, 2.1
subject to the boundary conditions;
u(0)=o, and u(l)=0,. (2.2)

Here 0<e<</is a very small positive parameter and a(s),b(s)and f(s) are smooth functions over the
domain. When the perturbation parameter € — 0, then the solution of Eq.(2.1) contains layer behaviour based
on the sign of convective coefficient a(s). If a(s)=K >0 where K is positive constant, then problem (2.1)
possesses boundary layer at s=0. If a(s) <Q0<0 where Q is a negative constant, then problem (2.1)
possesses boundary layer s =1.

3. Numerical scheme

Let the interval [0, 1] be split into N sub intervals with size h; =s; —s,_; for i=1 to Nand h,; =rh;.

For the computational implementation, the value h; has to be determined. Denote R =sy —s,.Then

R :(SN _SN—1)+(SN—] _SN_2)+.+(S1 _So) = hN +hN_1 +.+h12(r1 +I”17‘2 +....+V11’21’3...J"N_1)h1. Then
R

h; = shows the value of the initial step length which is used to determine the
(r1 +r1r2 +....+I’1}"2}"3...J’N_1)

next step lengths %, , h;, etc. In case of singular perturbation problems, the presence of a layer at the left end

boundary s =0 requires generally a large cluster of nodal points near the end point. Similarly, a large cluster
of nodal points at this boundary is needed if the layer is at the right end. The nodal points can be distributed
with the following process:

is chosen fori =1,2,..., N.
Hence, the step length 4, reduces to

We choose r>1 for the boundary layer at left end point and thus we have a larger number of nodal
points near the left end. Similarly, we choose » </ for the boundary layer at the right end point which
guaranties a large number of nodal points at the right end boundary. We can have a symmetric mesh with a
large number of nodal points at both ends when the boundary layer is at both the end points of the interval.

A non-uniform higher order finite difference approximation is considered for first and second derivatives as:
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w; = — lél YTy “l(w)"‘"fl(i)’
o (1-r)h (B —r+1)h?
u; =ul~+( 31) ; i (l 112 ) : u,(w)+’rz(1)
where:
2 2
o Wi Th u1—1+(ri —1)”1' N” 2[“f+1 +”i”i—1_(1+’?)ui]
u; = > i =
’ n(1+n)h ’ n(1+1)

...... T,(i)=—

(1+7)

h?

(=) s

b

Enumerating u; and ul-(iv) using Eq.(2.1) and utilising them in Eqgs (3.1)-(3.2), we get:

€

. 1 1

D {fiu —4a; (le _"i“}l —k;3 (’)

€

U;

€

1 uw AU !
”:ﬁ:-'_Ai{f;- —aiui _k3(l)ui_bi ui}_'_

u;—b,-lu,-)—k4<i>u;‘—k5<f>u;—b;‘u,}

where:

ky(i)=r; (1+7)h,

ky (1) =(24; +b,),

5 {fiu —4; (fl _aiuzu —k; (’)

€

ky (i) =r(1+1)h,

Now inserting Egs (3.3) and (3.4) in Eq.(2.1), we get;

Eu;_j+ Fu; + G =R;

for

ks (i) =(a; +28;).

i=12,..,N-1,

“z _bilui ) —ky (i)u;l — ks (l)”zl _biuui }

3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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where:

1

E = (2Ln=i?Miby).  F=(Mi(5 = 1)h = 2L (14 5)+ N (14 5)B ) G = (2L + M),

2 2 3 .

“B; “C, 7D Dk
Li=e—a4 -0 B, (i) + % C’—a’2‘+a’ ’ 4(1),

€ € € €

Biks (i Cik (i) a’Dik; (i) aDks (i
Mi=—Aik3(i)—al i 3(Z)+Bl~k5(i)+al~+al i 3(1)_al 123(Z)+al i 5(1)’
€ € € €
2
N, :_aiBibil " Bibiu +aicibil 4 lzibil " aiDibiu +b— A bil,
€ € € €

2
Rl»=(fl-—[/li+ai3i_aicj+ai gDiinl_(_Bi_ai_Dijfiqul(i)'
€

€ € IS

The system of equations Eq.(3.5) is solved by using the tridiagonal solver.
4. Convergence analysis

The proposed scheme has a truncation error which is

-+ DN =D’a
b+ )(Z )alu;’h;’+0(hf). @.1)

T(h)=
Let the tridiagonal system of Eq.(3.5) in matrix form be

YU=V, (4.2)

where; Y = (Jh',j) for 1<i,j< N -1 is a tridiagonal matrix with y, ;,; =G;, y;; = F;, y;;_; = E; and V =(v;)

1

is a column vector with v; =R, .
We have:

YU-T,(h;)=V (4.3)

t
where U =(uo,u],...,uNJ represents the actual solution and Ti(hi)z(To(ho),T](hl),...,TN(hN))t is the

local truncation error.
From Eq.(4.2) and Eq.(4.3), we get
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Y(U—Uj= (h;). (4.4)
Thus the error equation is
YE=T,(h;), 4.5

where

prg t
E:U_U:(eo,el,...,eN) .
Let S; be the sum of elements of the i row of matrix Y , then we have

N-1I
2a.r;(1—r
S; = Zmij =_2”i3+[az‘”i2 +%
J=1

N-1

Ar.+Dr=1b.
Si:Zmij:’/i(f}+1)bihl'2+[rl(r;+ )3(’; )le

j=I
+O(hl.4)=Bl-hf+0(hf) for i=2,3,.,N—-2,

I—r\)a
S, = m,..=—23+[(%—ajh,.+o(hf) for i=N-1.

’)jhi+0(h,-2) for i=1,

Since 0 <€ << 1, the matrix ¥~/ exists and it will have non-negative elements. Hence, from Eq.(4.5), we get

E=Y"'T,(I;)
and

E< YT (I).

— \th - . . .
Let my;; be the (kz)[ element of ¥~/ and since all its elements are non-negative, we have

> miiS =1, k=12,..N-I.

Therefore,

(4.6)

4.7)

(4.8)

(4.9)
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We define
N-1

v =1s7c1§a]§_1;|ﬁki| and E(hi)zlglgl\f_lm(hi”_

From Egs.(4.6), (4.8) and (4.9), we get

N-1
e;=) mgTi(k), j=123,..,N-1I,
i=1
which gives
kh!
;< 12 , j=12,.,.N-1 (4.10)
1B:| 4

where

(n+D);-1a;

9

is a constant independent of 7, .

Therefore, using Eq.(4.10), we have £ =0 ( h,.z ) i.e., the method is quadratic convergent on the non-uniform mesh.

5. Numerical experiments

Four boundary value problems are considered for the computational demonstration of the proposed

method. In the solution, the maximum absolute errors are calculated by E)y o = max |u (s;,)— ui| where u(s;)
S o<ish

is an exact solution and u; is the computed solution.

Example 1. eu"(s)+u'(s)=0 with u(0)=1, u(l)=e® .
The exact solution is given by

)

u(s)=et .

Example 2. —eu"(s)+u'(s)=e", u(0)=0,u(1)=0.
The exact solution is given by
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5

Fig.1. Exact and approximate solution for Example 1 at various values of € with N =1024 .
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Fig.2. Exact and approximate solution for Example 2 at various values of € with N =1024 .

-1

Example 3. ea"—silu'—sizu: (s), u(0)21+2?,u(1):e+2,
where
1
) I s+ ¢
= &E&——— €
f(s) e( s+ 1 s+2j s+2

The exact solution is given by

;] ]+l
u(s)=e’ +2¢(s+1) .

Example 4. eu"-u'-u=-1, u(0)=0, u(l)=0.
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The exact solution is given by

1+\/1+4ean

2¢e

1—1+4¢

where ¢; = de,=

5 T T T T T T T T T

45+t Exact solution
i Numerical solution

35

15 i

Fig.3. Exact and approximate solution for Example 3 at various values of € with N =1024 .
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Fig.4. Exact and approximate solution for Example 4 at various values of ¢ with N =128
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Table 1. Maximum absolute errors for various values of €.

e | N=64 | N=128 N=256 | N=512 | N=1024
Present Method
2| 5.6413(-6) 3.7664(-6) 3.6497(-6) 3.6425(-6) 3.6420(-6)
27 | 3.6000(-5) 5.6388(-6) 3.7660(-6) 3.6497(-6) 3.6424(-6)
276 5.4445(-4) 3.5958(-5) 5.6337(-6) 3.7654(-6) 3.6496(-6)
2’ 7.5000(-3) 7.5000(-3) 3.5876(-5) 5.6236(-6) 3.7641(-6)
2% | 5.8600(-2) 7.5000(-3) 5.4234(-4) 3.5711(-5) 5.6035(-6)
2 | 2.2540(-1) 3.8500(-2) 7.5000(-3) 3.3953(-4) 3.5385(-5)
Mohammadi [4]
2 1.90(-3) 4.79(-4) 1.16(-4) 2.93(-5) 7.43(-6)
27 7.87(-3) 1.90(-3) 4.77(-4) 1.17(-4) 2.96(-5)
56 3.44(-2) 7.85(-3) 1.90(-3) 4.75(-4) 1.15(-4)
7 1.35(-1) 3.45(-2) 7.84(-3) 1.90(-3) 4.72(-4)
8 3.49(-1) 1.33(-1) 3.43(-2) 7.83(-3) 1.90(-3)
9 5.98(-1) 3.50(-1) 1.30(-1) 3.41(-2) 7.81(-3)
Table 2. Maximum absolute error for various values of €.
e | N=64 | N=128 | N=256 | N=512 | N=1024
Present Method
21| 3.0844(-9) 2.8784(-9) 2.4632(-9) 2.4452(-9) 2.4342(-9)
2| 3.6761(-6) 2.3835(-7) 2.7397(-8) 2.7169(-8) 2.5270(-8)
278 | 1011101 1.2975(-2) 9.3445(-4) 3.6078(-5) 3.6112(-6)
Mohammadi [4]
2! 1.71(-5) 4.28(-5) 1.06(-5) 2.67(-6) 2.08(-7)
2 1.43(-3) 3.50(-3) 8.72(-4) 2.17(-4) 1.37(-5)
28 1.03(-1) 6.06(-2) 2.33(-2) 6.95(-3) 3.32(-4)
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Table 3. Maximum absolute error for various values of €.

Present Method

€ N =64 N=128 N =256 N=512 N=1024
2~ 9.5742(-9) 8.9062(-9) 7.6031(-9) 8.1440(-9) 7.4875(-9)
23 4.3741(-8) 1.3496(-8) 1.1458(-8) 1.2316(-8) 1.1345(-8)
2 4.4865(-7) 3.6238(-8) 1.9106(-8) 2.0564(-8) 1.9015(-8)
27 5.4604(-6) 3.5358(-7) 3.8485(-8) 3.6770(-8) 3.4178(-8)
270 7.6121(-5) 4.7287(-6) 3.1763(-7) 7.0271(-8) 6.3879(-8)
27 1.1771(-3) 7.0409(-5) 4.3946(-6) 3.2595(-7) 1.2294(-7)
2 1.5697(-2) 1.1298(-3) 6.7656(-5) 4.2758(-6) 3.7101(-7)
2’ 1.1964(-1) 1.5369(-2) 1.1065(-3) 6.6385(-5) 4.2743(-6)

Mohammadi [4]

272 | 24745 6.19(-6) 1.54(-6) 3.87(-7) 9.67(-8)
27| 17149 4.28(-5) 1.07(-5) 2.67(-6) 6.69(-7)
277 81249 2.03(-4) 5.07(-5) 1.26(-5) 3.17(-5)
27 | 35343 8.79(-4) 2.19(-4) 5.48(-5) 1.37(-3)
270 | 1.50(-2) 3.68(-3) 9.17(-4) 2.29(-4) 5.72(-5)
27 | 6.75(-2) 1.54(-2) 3.77(-3) 9.37(-4) 2.34(-4)
2% | 2661 6.83(-2) 1.55(-2) 3.81(-3) 9.48(-4)
272 | 6.92¢1) 2.68(-1) 6.87(-2) 1.56(-2) 3.83(-3)

Table 4. Comparison of point wise errors of Example 4 at various values of s for e =1 0.

N=32 N=128
Pooja Present Pooja
s Present Method Khandelwal [5] Method Khandelwal [5]
1/16 9.4625(-8) 4.55(-6) 5.7740(-8) 2.84(-7)
2/16 1.7789(-7) 8.55(-6) 1.0855(-7) 5.30(-7)
4/16 3.1436(-7) 1.51(-5) 1.9182(-7) 9.45(-7)
6/16 4.1664(-7) 2.00(-5) 2.5423(-7) 1.25(-6)
12/16 5.7426(-7) 3.07(-5) 3.5074(-7) 1.73(-6)
14/16 1.6118(-5) 1.41(-3) 3.4675(-7) 7.31(-7)

6. Discussions and conclusion

A finite difference method on a non-uniform mesh for the solution of a singular perturbation boundary
value problem is proposed. The first and second order derivatives are approximated by the higher order finite
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differences on a variable mesh for acquiring the discretization equation. Four examples are implemented to
demonstrate the proposed scheme. The justification of the proposed method is given by comparing the
numerical results with the other methods reported in the literature. Better results are observed with the proposed
method. It is observed from graphical representation that the width of the boundary layer decreases as the
perturbation parameter € decreases. Convergence of the method is established and it converges uniformly. The
accurate results with little computational effort are produced with the proposed method.

Nomenclature
E —error
h. — mesh size

i
K —positive constant

N —number of sub intervals
O —negative constant

— mesh ratio

s —independent variable

— mesh points

u — solution

U —solution matrix

vV —right hand side matrix
Y —tridiagonal matrix

¢ — perturbation parameter

T; — truncation error
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