PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Basic characteristics of networks with self-similar traffic simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to simulations the networks with self-similar traffic. The self-similarity in the stochastic process is identified by calculation of the herst parameter value. Based on the results, received from the experimental research of network perfomance, we may conclude that the observed traffic in real-time mode is self-similar by its nature. Given results may be used for the further investigation of network traffic and work on the existing models of network traffic (particularly for new networks concepts like IoT, WSN, BYOD etc) from viewpoint of its cybersecurity. Furthermore, the adequacy of the description of real is achieved by complexifying the models, combining several models and integration of new parameters. Accordingly, for more complex models, there are higher computing abilities needed or longer time for the generation of traffic realization.
Rocznik
Strony
137--141
Opis fizyczny
Bibliogr. 11 poz., il., wykr.
Twórcy
  • Institute of Technology, State University of Applied Sciences in Nowy Sącz
  • Academic Dept of Telecommunication Systems, National Aviation University (Kyiv, Ukraine)
  • Academic Dept of IT-Security, National Aviation University (Kyiv, Ukraine)
  • Institute of Technology State University of Applied Sciences in Nowy Sącz
Bibliografia
  • 1. О. Sheluhin. Multifractals. Infocommunicational applications, М.: Hotline-Telecom, 2011, 576 p.
  • 2. А. Melikov, L. Ponomarenko, V. Paladuk. Teletraffic: Models, methods, optimization, K.: IPK «Polytechnica», 2007, 256 p.
  • 3. О. Sheluhin, А Tenyakshev, А. Osin. Modeling of information systems. Study guide, М.: Radiotechnica, 2005, 368 p.
  • 4. А. Privalov, М. Bayeva. Modeling of self-similar traffic// News from the Samara science centre of Russian science academy, P. 1041-1046.
  • 5. А. Kostromitskyi. Approaches to self-similar traffic modeling // Eastern-Europe journal of modern technologies, 2010, 4/7 (46), С. 46-49.
  • 6. R. Shyhaliyev. Аnalysis and classification of network traffic in computer networks // Information technologies problems, 2010, № 2, С. 15-23.
  • 7. Е. Dobrovolskyi, О. Nechyporuk. Мodeling of the network traffic with the use of context methods // Science works ОNАZ named after. О. S. Popov, 2005, № 1, P. 24-32.
  • 8. І. Matychyn, V. Onyshchevko. Мodeling and analysis of telecommunication systems and networks traffic // Visnyk DUIKT, 2013, № 4, P. 20-27.
  • 9. N. Trenogyn, D. Е. Sokolov. Fractal features of network traffic in a client-server information system // Vestnyk NII SYVPT, P. 163-172.
  • 10. A. Kostromitsky Network traffic analysis and monitoring tool review, Access mode: http://pi.314159.ru/volotka/volotka1.htm
  • 11. Y. Semenov Network modeling, Access mode: ttp://citforum.ck.ua/nets/semenov/4/45/modl4517.shtml
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60a8dc35-eef1-4d71-9729-c72ec514612b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.