PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rotary upgrading method and its experimental study of an inertially stabilized platform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rotation modulation can significantly improve the navigation accuracies of an inertial navigation system (INS) and a strap-down configuration dominating in this type of INS. However, this style of construction is not a good scheme since it has no servo loop to counteract a vehicle manoeuvre. This paper proposes a rotary upgrading method for a rotational INS based on an inertially stabilized platform. The servo control loop is reconstructed on a four-gimbal platform, and it has the functions of providing both a level stability relative to the navigation frame and an azimuth rotation at a speed of 1.2°/s. With the platform’s rotation, the observability and the convergence speed of the estimation for the initial alignment can be improved, as well as the biases of the gyroscopes and accelerometers be modulated into zero-mean periodic values. An open-loop initial alignment method is designed, and its detailed algorithms are delivered. The experiment result shows that the newly designed rotational INS has reached an accuracy of 0.38 n mile/h (CEP, circular error probable). The feasibility and engineering applicability of the designed scheme have been validated.
Rocznik
Strony
617--629
Opis fizyczny
Bibliogr. 27 poz., fot., rys., tab., wzory
Twórcy
autor
  • Beihang University, School of Instrumentation Science and Opto-electronics Engineering, Beijing 100191, China
  • North University of China, School of Information and Communication Engineering, Taiyuan 030051, China
autor
  • Beihang University, School of Instrumentation Science and Opto-electronics Engineering, Beijing 100191, China
  • Beihang University, School of Instrumentation Science and Opto-electronics Engineering, Beijing 100191, China
  • Beihang University, School of Instrumentation Science and Opto-electronics Engineering, Beijing 100191, China
Bibliografia
  • [1] Hilkert, J. M. (2008). Inertially stabilized platform technology concepts and principles. IEEE Control Systems, 28 (1), 26-46.
  • [2] Masten, M. K. (2008). Inertially stabilized platforms for optical imaging systems. IEEE Control Systems, 28 (1), 47-64.
  • [3] Zhang, Q., Wang, L., Liu, Z. J., Feng, P. D. (2015). An accurate calibration method based on velocity in a rotational inertial navigation system. Sensors, 15 (8), 18443-18458.
  • [4] Li, K., Gao, P. Y., Wang, L., Zhang, Q. (2015). Analysis and Improvement of Attitude Output Accuracy in Rotation Inertial Navigation System. Mathematical Problems in Engineering, 1, 1-10.
  • [5] Morris, M. K., Morray, S. G. (1983). Inertial Navigation. Proc. of the IEEE, 71 (10), 1156-1176.
  • [6] Geller, E. S. (1968). Inertial System Platform Rotation. IEEE Transactions on Aerospace & Electronic Systems, 4 (4), 557-568.
  • [7] Liang, A. C., Kleinbub, D. L. (1974). Drift Compensation and Acceleration Resolution for a Rotating Platform IMU. Journal of Spacecraft & Rockets, 11 (8), 547-548.
  • [8] Ishibashi, S., Tsukioka, S., Yoshida, H. (2007). Accuracy improvement of an inertial navigation system brought about by the rotational motion. OCEANS 2007 – Europe. Aberdeen, Scotland, United Kingdom, IEEE, 1-5.
  • [9] Song, N., Cai, Q., Yang, G. (2013). Analysis and calibration of the mounting errors between inertial measurement unit and turntable in dual-axis rotational inertial navigation system. Measurement Science & Technology, 24 (11), 5002-5012.
  • [10] Wang, L., Zhang, Q. (2014). Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro. Optical Engineering, 53 (6), 064103-064111.
  • [11] Wang, L. C. Li, K., Chen, Y. (2017). Single-axis rotation/azimuth-motion insulation inertial navigation control system with FOGs. Optics Express, 25 (25), 30956-30975.
  • [12] Sarma, S., Agrawal, V. K., Udupa, S. (2008). Instantaneous angular position and speed measurement using a DSP based resolver-to-digital converter. Measurement, 41 (7), 788-796.
  • [13] Al-Emadi, N., Ben-Brahim, L., Benammar, M. (2014). A new tracking technique for mechanical angle measurement. Measurement, 54 (8), 58-64.
  • [14] Zhang, C., Wang, L., Zhang, J. (2016). High precision locking control based on fiber optic gyro and photoelectric encoder for rotational inertial navigation system. Ieice Electronics Express, 13 (20), 1-11.
  • [15] Fang, J., Yin, R., X., Lei. (2015). An adaptive decoupling control for three-axis gyro stabilized platform based on neural networks. Mechatronics, 27, 38-46.
  • [16] Ang, K. H., Chong G., Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13 (4), 559-576.
  • [17] Fang, L., Wei, W., Zhang, Z. Y. (2012). Motor rotation control method for rotation-modulation SINS. Electric Machines & Control., 11, 17-21.
  • [18] Baritzhack, I. Y., Berman, N. (1988). Control theoretic approach to inertial navigation systems. Journal of Guidance, Control and Dynamics, 10 (10), 1442-1453.
  • [19] Hung, J. C., White, H. V. (1975). Self-Alignment Techniques for Inertial Measurement Units. IEEE Transactions on Aerospace & Electronic Systems, 11 (6), 1232-1247.
  • [20] Song, T., Li, K., Wang, L. (2017). A rapid and high-precision initial alignment scheme for dual-axis rotational inertial navigation system. Microsystem Technologies, 23 (12), 1-11.
  • [21] Wang, X. (2009). Fast alignment and calibration algorithms for inertial navigation system. Aerospace Science Technology, 13 (4), 204-209.
  • [22] Jiang, Y. F., Lin, Y. P. (1992). Error estimation of INS ground alignment through observability analysis. IEEE Transactions on Aerospace & Electronic Systems, 28 (1), 92-97.
  • [23] Che, Y., Wang, Q., Gao, W. (2015). An Improved Inertial Frame Alignment Algorithm Based on Horizontal Alignment Information for Marine SINS. Sensors, 15 (10), 1415-1419.
  • [24] Silva, F. O., Hemerly, E. M., Filho, W.C.L. (2016). On the error state selection for stationary SINS alignment and calibration Kalman filters - part I: Estimation algorithms. Aerospace Science & Technology, 61, 45-56.
  • [25] Liu, M., Gao, Y., Li, G. (2016). An Improved Alignment Method for the Strapdown Inertial Navigation System (SINS). Sensors, 16 (5), 621-638.
  • [26] Wu, M., Wu, Y, Hu, X. (2011). Optimization-based alignment for inertial navigation systems: Theory and algorithm. Aerospace Science & Technology, 15 (1), 1-17.
  • [27] Gao, W., Zhang, Y., Wang, J. (2015). Research on Initial Alignment and Self-Calibration of Rotary Strapdown Inertial Navigation Systems. Sensors, 15 (2), 3154-3171.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6097a744-3540-4106-b76a-57ed4203bd4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.