PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the possibility of hiding decomposed information in the virtual reality environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Information is a fundamental resource, generated by mankind, it is through it that one can reduce or eliminate the effects of a cataclysm, make or lose a fortune, or even shorten a war. The transmission of hidden information in the form of cryptographic techniques has been known to mankind since the dawn of time. Initially simple, basic encryption has evolved into sophisticated steganographic hiding of information gaining more and more resistance to breakage with the development of technology. It is very difficult to develop a new, effective encryption algorithm. Therefore, it becomes very important to skillfully use already existing cryptographic algorithms and develop a new general encryption algorithm. The idea of where to hide the data also becomes important. The article proposes an author's novel system for decomposing the hidden information. Using steganography, a fragmented password is hidden in 3D objects in the Virtual Reality application world. The data is hidden directly in the VR world (a multiplayer simple game) with the caveat, however, that not everyone knows where to look for it. The time in which the information is sought is also important. Clues as to how , when and where to find the data are encoded in 3D objects. The possibility of hiding information in the metadata, in the texture, in the coordinates of the vertices of the objects and also in the UV map has been thoroughly investigated.
Twórcy
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
  • 1. Farrag, S.; Alexan, W. Secure 3D data hiding technique based on a mesh traversal algorithm. Multimedia Tools Appl. 2019. doi:10.1007/s11042-019-07888-1.
  • 2. Liu, X.; Lee, H.; Jiang, Y. Adversary-guided motion retargeting for skeleton anonymization. arXiv 2024. doi:10.48550/arXiv.2405.05428.
  • 3. Feng, X.; Lu, Z.; Yang, W. A robust image steganography based on edge detection and LSB matching revisited. Multimedia Tools Appl. 2017, 76(20), 21401–17. doi:10.1007/s11042-017-4866-2.
  • 4. Jain, N.; Chaudhary, S. Secure and high capacity image steganography technique using curvelet transform and LSB insertion. J. Inf. Secur. Appl. 2018, 41, 41–51. doi:10.1016/j.jisa.2018.05.003.
  • 5. Kaur, A.; Aujla, G.S. A hybrid approach for image steganography using LSB, DCT, and DWT. Multimedia Tools Appl. 2019, 78(1), 425–37. doi:10.1007/s11042-018-6281-7.
  • 6. Wang, H.; Zhang, H.; Liu, X. Improved adaptive image steganography based on deep convolutional neural networks. IEEE Access 2020, 8, 19083–93. doi:10.1109/ACCESS.2020.2968736.
  • 7. Chan, C.K.; Cheng, L.M. Image steganography based on LSB matching revisited. IEEE Trans. Inf. Forensics Secur. 2011, 2(2), 190–7. doi:10.1109/TIFS.2007.898004.
  • 8. Kozieł, G. Steganography usage to control multimedia stream. Adv. Sci. Technol. Res. J. 2014, 8(21), 5–8.
  • 9. Li, J.; Zhang, Y. A novel steganography technique using texture mapping function and convolutional neural networks. Appl. Sci. 2020, 10(12), 4211. doi:10.3390/app10124211.
  • 10. Song, H.; Huang, Y. Steganography based on PCA and texture synthesis. Signal Process. 2016, 128, 59–66. doi:10.1016/j.sigpro.2016.03.003.
  • 11. Wang, Z.; Wu, S. Deep learning-based steganography for texture images. IEEE Access 2019, 7, 167614–23. doi:10.1109/ACCESS.2019.2954112.
  • 12. Cheng, Y.; Wang, C. A high-capacity steganographic approach for 3D polygonal meshes. Vis. Comput. 2006, 22(9–11), 845–55. doi:10.1007/s00371-006-0069-4.
  • 13. Chuang, H.; Cheng, C.; Yen, Z. Reversible data hiding with affine invariance for 3D model. In: IET International Conference on Frontier Computing, Theory, Technologies and Applications; 2010. pp 77–81. doi:10.1049/cp.2010.0541.
  • 14. Alkhamese, A.; ElGhawalby, H.; Eid, A.; Hanafy, I.; Awad, W. Highly secured 3D object steganography technique for hiding compressed data. Alfarama J. Basic Appl. Sci. 2024, 5(2), 208–20. doi:10.21608/ajbas.2024.228974.1171.
  • 15. Li, N.; Hu, J.; Sun, R.; Wang, S.; Luo, Z. A high-capacity 3D steganography algorithm with adjustable distortion. IEEE Access 2017, 5, 24457–66. doi:10.1109/ACCESS.2017.2767072.
  • 16. Song, H.; Kim, J. Efficient data hiding in 3D geometric models using UV mapping. J. Comput. Sci. 2017, 35(4), 123–34. doi:10.1007/s00530-017-0134-8.
  • 17. Lee, S.; Park, J. Robust steganographic techniques for 3D models based on UV coordinates. Comput. Graph. 2019, 83, 123–38. doi:10.1016/j.cag.2019.07.002.
  • 18. Wang, X.; Zhang, Y. High-capacity data embedding in 3D models using UV map distortion. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1025–34. doi:10.1109/TIFS.2019.2933456.
  • 19. Kozieł, G.; Malomuzh, L. 3D model fragile watermarking scheme for authenticity verification. Adv. Sci. Technol. Res. J. 2024, 18(8), 351–65. doi:10.12913/22998624/194146.
  • 20. Klubsuwan, K.; Mungsing, S. Digital data security and hiding on virtual reality video 3D GIS. Int. J. Adv. Comput. Sci. Appl. 2020, 11(9), 572–9.
  • 21. Zhao, Q.; Liu, H. Secure information hiding in 3D meshes with UV mapping. Comput. Secur. 2023, 113, 102484. doi:10.1016/j.cose.2022.102484.
  • 22. Sadurski, P.; Szymczyk, T. Application for hiding information in virtual reality [Engineering thesis]. Lublin University of Technology, 2023.
  • 23. Kumar, A.; Bala, A. A novel image steganographic method based on LSB substitution technique. J. Inf. Assur. Cybersecurity 2017, 1(2), 65–72.
  • 24. Jain, A.; Singh, V.; Agarwal, R. Adaptive image steganography based on LSB matching revisited. J. Comput. Sci. Technol. 2019, 3(4), 112–9.
  • 25. Kozieł, G. Simplified steganographic algorithm based on Fourier transform. Adv. Sci. Lett. 2014, 20(2), 505–9. doi:10.1166/asl.2014.5322.
  • 26. Sharma, A.; Kumar, R. A novel approach for image steganography based on wavelet transform and fast Fourier transform. Int. J. Comput. Appl. 2018, 180(29), 12–8.
  • 27. Zhang, Y.; Li, L. Image steganography based on combined wavelet-FFT transformation. J. Vis. Commun. Image Represent. 2016, 38, 472–80.
  • 28. Gupta, S.; Sharma, V. A novel approach for image steganography based on discrete wavelet transform. J. Inf. Hiding Multimed. Signal Process. 2018, 9(3), 512–21.
  • 29. Structural Similarity Index. Available from: https://www.ni.com/docs/en-US/bundle/ni-vision-concepts-help/page/structural_similarity_index.html. Accessed 2025 Oct 21.
  • 30. Kim, H.; Yang, K.; Kim, Y. A study of the perceptually weighted peak signal-to-noise ratio (WPSNR) for image compression. IEEE Xplore 2019. doi:10.1109/ICIP.2019.8803307.
  • 31. Klubsuwan, K.; Mungsing, S. Digital Data Security and Hiding on Virtual Reality VDO 3DGIS-Map. Int. J. Manag. Sci. Eng. Manag. 2009, 4(3), 163–76. Available from: doi:10.1080/17509653.2009.10684575.
  • 32. Patrão, B.; Cruz, L.; Gonçalves, N. Large Scale Information Marker Coding for Augmented Reality Using Graphic Code. In: 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR); 2018 Dec 10-12; Taichung, Taiwan. IEEE: 2018, 132–5. doi:10.1109/AIVR.2018.00034.
  • 33. Li, C.; Sun, X.; Li, Y. Information hiding based on Augmented Reality. Math Biosci Eng. 2024, 16(5), 4777–4787. doi:10.3934/mbe.2024.1.4777.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-608fd14c-8f5b-4ac6-a33f-70a2fdab2280
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.