PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the cutting force components and the surface roughness in the milling process of micro-and nanocrystalline titanium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanocristalline pure titanium in comparison to inicrocrystalline titanium is characterized by better mechanical properties which influence its wider usability. The aim of the research was to evaluate whether the grain size of pure titanium (micro- and nanocrystalline) has influence on the cutting force components and the surface roughness in the milling process. Models of cutting force components for both materials were prepared and differences between the results were examined. The feed rate effect on selected parameters of surface roughness after milling of micro- and nanocrystalline pure titanium was determined.
Twórcy
autor
  • Rzeszów University of Technology, Department of Manufacuring Technique and Automation, 12. Powst. Warszawy Av., 35-959 Rzeszów, Poland
autor
  • Rzeszów University of Technology, Department of Materials Science, 12. Powst. Warszawy Av., 35-959 Rzeszów, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska str., 02-507 Warszawa
  • Rzeszów University of Technology, Department of Materials Science, 12. Powst. Warszawy Av., 35-959 Rzeszów, Poland
Bibliografia
  • [1] K. Topolski, W. Pachla, H. Garbacz, Progress in hydrostatic extrusion of titanium. Journal of Material Science 48, 4543-4548 (2013).
  • [2] K. Topolski et al., Mechanical Properties of nanocrystalline titanium fabricated by hydrostatic extrusion. Archives of Metallurgy and Materials 57, 863-867 (2012).
  • [3] N. Narutaki, A. Murakoshi, S. Motonishi, H. Takeyama, Study on Machining of Titanium Alloys, CLRP Annals - Manufacturing Technology 32, 65-69 (1983).
  • [4] C. Veiga., J. P. Daviin, A. J. R. Loureiro, Review on machinability of titanium alloys: the process perspective. Reviews on Advanced Materials Science, 34, 148-164 (2013).
  • [5] G. Krolczyk, P. Nieslony, S. Legutko, S. Hloch, I. Samardzic, Investigation of selected surface integrity features of duplex stainless steel (DSS) after turning. Metalurgija 54, 1, 91-94 (2015).
  • [6] E. O. Ezugwu, J. Bonney, Y. Yamane, An overview of the machinability of aeroengine alloys, Journal of Materials Processing Technology 134, 233-253 (2003).
  • [7] D. I. Lalwani N. K. Mehta, P. K. Jain, Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel, Journal of Materials Processing Technology 206, 167-179 (2008).
  • [8] M. W. Aziziet al., Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel, Journal of Mechanical Science and Technology, 26, 4105-4114 (2012).
  • [9] G. Bartarya, S. K. Choudhury, Effect of Cutting Parameters on Cutting Force and Surface Roughness During Finish Hard Turning AISI52100 Grade Steel, Procedia CIRP, 1, 651-656 (2012).
  • [10] M. Donachie, Titanium: a technical guide (Metals Park, OH: American Society for Metals, 1988).
  • [11] S. Jaffery and P. Mativenga, Assessment of the machinability of Ti-6Al-4V alloy using the wear map approach, The International Journal of Advanced Manufacturing Technology 40, 687-696 (2009).
  • [12] A. R. Zareena, S. C. Veldhuis, Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium, Journal of Materials Processing Technology 212, 560-570 (2012).
  • [13] K. V. Kutniy et al., Obtaining of pure nanostructured titanium for medicine by severe deformation at cryogenic temperatures, Materialwissenschaft Und Werkstofftechnik 42, 114-117 (2011).
  • [14] R. Lapovok, A. Molotnikov, Y. Levin, A. Bandaranayake, Y. Estrin., Machining of coarse grained and ultra fine grained titanium, Journal of Materials Science 47, 4589-4594. (2012).
  • [15] D. Ulutan, T. Ozel, “Machining induced surface integrity in titanium and nickel alloys: A review, International Journal of Machine Tools and Manufacture 51, 250-280 (2011).
  • [16] E. O. Ezugwu, Z.M. Wang, Titanium alloys and their machinability a review, Journal of Material Processing Technology 68, 262-274 (1997).
  • [17] K. E. Oczos, Ksztaltowanie ubytkowe tytanu i jego stopów w przemysle lotniczym i technice medycznej, Mechanik 8-9, 639-656 (2008).
  • [18] H. Ding, Y. C. Shin, Dislocation density-based grain refinement modeling of orthogonal cutting of commercially pure titanium, Proc. of ASME 2011 Int. Manufacturing Science and Engineering Conference, MSEC 2011-50220, 1-10.
  • [19] P. Nieslony, G. Wit, P. Laskowski, W. Habrat, FEM-based modelling of the influence of thermophysical properties of work and cutting tool materials on the process performance, Procedia CIRP 12, 3-8 (2013).
  • [20] L. Wen-Hsiang, Modeling of cutting forces in end milling operations, Tamkang Journal of Science and Engineering, 3, 15-22 (2000).
  • [21] G. M. Krolczyk, P. Nieslony, S. Legutko, Determination of tool life and research wear during duplex stainless steel turning, Archives of Civil and Mechanical Engineering, 15, 347-354 (2015).
Uwagi
EN
Financial support of Structural Funds in the Operational Program - Innovative Economy (IE OP) financed by the European Regional Development Fund - Project No POIG.01.03.01-00-015/08 (NANOMET) is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-608fa688-129a-4b8a-b1ab-7ab44f0ac2c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.