PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The FEM analysis of stress distribution in front of the crack tip and fracture process in the elements of modified and unmodified cast steel G17CrMo5-5

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents influence of modification of the low-alloy cast steel G17CrMo5-5 by rare earth metals on stress distribution in front of the crack at the initial moment of the crack extension. Experimental studies include determination of strength and fracture toughness characteristics for unmodified (UM) and modified (M) cast steel. In the numerical computations, experimentally tested specimens SEN(B) were modelled. The true stress–strain curves for the UM and M cast steel are used in the calculation. The stress distributions in front of the crack were calculated at the initial moment of the crack extension. On the basis of data on the particle size inclusions in the UM and M cast steel, and the calculated stress distributions was performed an assessment of the possibility of the occurrence of cleavage fracture. The analysis results indicate that at room temperature for the UM cast steel, there is a possibility of cleavage fracture, while for the M cast steel occurrence of cleavage fracture is negligible.
Rocznik
Strony
201--206
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Machine Design Fundamentals, Faculty of Mechatronics and Machine Design, Kielce University of Technology, Al. 1000-lecia PP 7, 25-314 Kielce, Poland
autor
  • Department of Machine Design Fundamentals, Faculty of Mechatronics and Machine Design, Kielce University of Technology, Al. 1000-lecia PP 7, 25-314 Kielce, Poland
Bibliografia
  • 1. ASTM E1737-96, Standard Test Method for J-integral Characterization of Fracture Toughness.
  • 2. ASTM E1820-09, Standard Test Method for Measurement of Fracture Toughness, Annual book of ASTM standards. V.03.01, 1070-1118 (2011).
  • 3. Beremin F.A. (1983), A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metallurgical Transaction, A, 14A, 2277-2287.
  • 4. Bolanowski K. (2005), Structure and properties of MA-steel with rare earth elements addition, Archives of Metallurgy and Materials, 50, 327-332.
  • 5. Curry D.A., Knott J.F. (1978), Effect of microstructure of cleavage fracture stress in steel, Metallurgical Science, 511-514.
  • 6. Dolby R.E. Knott J.F. (1972), Toughness of martensitic and martensitic-bainitic microstructures with particular reference to heat affect zones, Journal of the Iron and Steel Institute, 210, 857-865.
  • 7. Dzioba I. (2011), The influence of the microstructural components on fracture toughness of 13HMF steel, Materials Science, 47 (5), 357-364.
  • 8. Dzioba I. (2012), Modelling and anslysis of fracture process in ferritic steels, Politechnika Świętokrzyska, Kielce, (in Polish).
  • 9. Dzioba I., Gajewski M., Neimitz A. (2010), Studies of fracture processes in Cr-Mo-V ferritic steel with various types of microstructure, International Journal Pressure Vessel and Piping, 87, 575-586.
  • 10. Dzioba I., Kasińska J., Pała R. (2015), The influence of the rare earth metals modification on the fracture toughness of G17CrMo5-5 cast steel at low temperatures, Archives of Metallurgy and Materials, 60, 773-777.
  • 11. EN–10213–2:1999. Cast steel G17CrMo5-5.
  • 12. Gajewski M., Kasińska J. (2009), Rare earth metals influence on mechanical properties and crack resistance of GP240GH and G17CrMo5-5 cast steels, Archives of Foundry Engineering, 9, 37-44.
  • 13. Guo W. (1993), Elastoplastic three dimensional crack border field - I. Singular structure of the field, Engineering Fracture Mechanics, 46, 93-104.
  • 14. Heon Y.H, ChanJin P., HyukSang K.(2006), Effect of misch metal on the formation of non – metallic inclusions in 25% Cr duplex stainless steels, Scripta Materialia, 55, 991-994.
  • 15. Kasińska J. (2014), Influence of rare earth metals on microstructure and inclusions morphology G17CrMo5-5 cast steel, Archives of Metallurgy and Materials, 59, 993-996.
  • 16. Knott J.F. (1977), Micromechanisms of fracture and fracture toughness of engineering alloys, ICF-4 Fracture, 1, 61-91.
  • 17. Lewandowski J.J., Thompson A.W. (1987), Micromechanisms of cleavage fracture in fully pearlitic microstructures, Acta Metallurgica, 35, 1453-1462.
  • 18. Luniov V.V. (2003), Non metallic inclusions and properties of cast steels, Przegląd Odlewnictwa, 53(9). 299-304.
  • 19. McClintok F.A. (1968), A criterion for ductile fracture by growth of holes, Journal of Applied Mechanics, 35 (4), 353-371.
  • 20. Neimitz A., Dzioba I., Pała R., Janus U. (2015), The influence of the out-of-plane constraint on fracture toughness of high strength steel at low temperatures, Solid State Phenomena, 224, 157-166.
  • 21. Neimitz A., Gałkiewicz J., Dzioba I. (2010),The ductile to cleavage transition in ferritic Cr-Mo-V steel: A detailed microscopic and numerical analysis, Engineering Fracture Mechanics, 77, 2504-2526.
  • 22. Pineau A. (2006), Development of the local approach to fracture over the past 25 year: theory and applications, International Journal of Fracture,138, 139-166.
  • 23. Rice J.R., Tracey D.M. (1969), On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids, 17, 201-217.
  • 24. Ritchie R.O., Knott J.F., Rice J.R. (1973), On the relationship between critical tensile stress and fracture toughness in mild steel, Journal of the Mechanics and Physics of Solids, 21, 395-410.
  • 25. Seweryn A. (1994), Brittle Fracture criterion for structures with sharp notches, Engineering Fracture Mechanics, 45 (5), 673-681.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-608f8f19-5e62-4143-8109-c35fef7adc3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.