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1. INTRODUCTION

In their celebrated work Lieb and Thirring [21] introduced a family of inequalities that
are now known as Lieb–Thirring inequalities. These inequalities, or more precisely
the Lieb–Thirring inequalities in spectral form, are concerned with the negative
eigenvalues, λj , of the one particle Schrödinger operator −∆ + V . They bound the
Riesz means

∑
j |λj |γ in terms of Lp norms of the potential V . Lieb and Thirring

introduced their inequalities in their study of the stability of matter. However, these
inequalities have found numerous applications in other problems in functional analysis
and mathematical physics. The recent monograph [12] contains an extensive study
of Lieb–Thirring inequalities. Here we will content ourselves of stating results in one
dimension, that are more closely related to our work. It was proved in [21] for γ > 1/2,
and by [26] for γ = 1/2, that,

∑

j

|λj |γ ≤ Lγ,1

∫

R

V−(x)1/2+γ dx,

with V = V+ − V−, where V± := 1/2(|V | ± V ) are, respectively, the positive and
the negative parts of the potential V . Further, V− ∈ L1/2+γ(R), and V+ ∈ L1

loc(R).
Moreover, L1,γ is a constant independent of V . In the case γ = 1/2, L1/2,1 = 1/2,
and this value is sharp [15]. In [11] Lieb–Thirring inequalities were proved for the
matrix Schrödinger operator on the half-line. Namely, they consider the selfadjoint
Schrödinger operator − d2

dx2 + V (x) in L2(R+,Cn), for n = 1, . . ., with the boundary
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condition ψ′(0) = Bψ(0), where V (x) is a selfadjoint, n × n matrix that satisfies,
V ≥ 0,

∞∫

0

Tr[V 2(x)] dx < ∞,

and B is a selfadjoint n× n matrix.
One of their main results is the following. They prove that the negative spectrum

of the Schrödinger operator consists of eigenvalues λj , with multiplicity mj . Further,
the following Lieb–Thirring estimate holds [11],

3
4 |λ1| Tr[B] + 1

2(2m1 − n)|λ1|3/2 +
∑

j≥2
mj |λj |3/2 ≤ 3

16

∞∫

0

Tr[V 2(x)] dx+ 1
4 Tr[B3].

For further results on Lieb–Thirring inequalities on the half-line in the scalar case see
[10] and [24].

In this paper we are interested in reverse Lieb–Thirring inequalities in one dimension.
Namely, in inequalities where one bounds from below a Riesz mean of the absolute
value of the negative eigenvalues by the integral of the potential. This type of inequality
was first proved independently by Glaser et al. [14], and by Schminke [25]. It was
proved by these authors that

∑

j

√
|λj | ≥ −1

4

∫

R

V (x)dx,

where the potentials V is integrable. Furthermore, the constant 1/4 is sharp. See
also [9] for a further reverse Lieb–Thirring inequality. Moreover, see [3] for two sided
Lieb–Thirring inequalities in terms of the landscape function.

The aim of this paper is to prove a reverse Lieb–Thirring inequality for the matrix
Schrödinger operator on the half-line. For the results below in the half-line ma-
trix Schrödinger operator the reader can consult [1]. Let us consider the formal matrix
Schrödinger operator in L2(R+,Cn), for n = 1, . . .,

− d2

dx2 + V (x), (1.1)

where the potential V is an n× n selfadjoint matrix-valued function. We assume that
the potential V is integrable, i.e. it satisfies

∞∫

0

dx |V (x)| < ∞, (1.2)

where |V (x)| denotes the operator norm of the matrix V (x). We obtain a selfadjoint
Schrödinger operator on the half line by supplementing the formal matrix Schrödinger
operator (1.1) with the general selfadjoint boundary condition at x = 0, which is
written as

−B†ψ(0) +A†ψ′(0) = 0, (1.3)
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where the n× n matrices A and B satisfy

B†A = A†B, (1.4)

A†A+B†B > 0, (1.5)

and we refer to A and B as the boundary matrices. Postmultiplying the boundary
matrices on the right by an invertible n×n matrix T does not change (1.3). Thus, even
though the boundary condition (1.3) is uniquely determined by the boundary-matrix
pair (A,B), the matrix pair (AT,BT ) with any invertible matrix T also yields the
same boundary condition (1.3). Actually, as proved in Proposition 2.2.1 of [1], this
is the only freedom that we have in choosing the matrices A,B. We denote by
HA,B(V ) the selfadjoint realization in L2(R+,Cn) of the formal Schrödinger operator
− d2

dx2 + V (x) with the boundary condition (1.3), where the boundary matrices A,B
satisfy (1.4), (1.5). For the details in the construction of HA,B(V ) see Sections 3.3,
and 3.5 of [1]. As proved in Sections 3.4 and 3.6 of [1], we can unitarily transform the
operator HA,B(V ) into the operator HÂ,B̂(V̂ ) := MHA,B(V )M†, V̂ := MVM†, where
M is a unitary matrix, and A = MÂT1M

†T2, B = MB̂T1M
†T2, for some invertible

matrices T1, T2, and where

Â = − diag{sin θ1, . . . , sin θn}, B̂ = diag{cos θ1, . . . , cos θn},
0 < θj ≤ π, j = 1, . . . , n.

(1.6)

With the boundary matrices (1.6) the boundary condition (1.3) takes the form

(cos θj)ψj(0) + (sin θj)ψ′(0) = 0, j = 1, . . . , n. (1.7)

By (1.7), we see that in the representation where the boundary matrices are diagonal
we have Dirichlet boundary condition when θj = π, Neumann boundary condition
when θj = π/2, and mixed boundary condition if θj ̸= π/2, π. Further, we have no
Dirichlet boundary condition in (1.7) if and only if the boundary matrix A is invertible.

For our reverse Lieb–Thirring inequality we consider the boundary condition (1.3)
with the boundary matrix A invertible. As mentioned above, this amounts to exclude
Dirichlet boundary conditions in the diagonal representation of the boundary matrices.
We exclude Dirichlet boundary conditions to obtain a meaningful reverse Lieb–Thirring
inequality, as we explain in Remark 4.1 below. Note that if A is invertible we can take
T = A−1 and transforming (A,B) into (AT,BT ) we obtain the boundary matrices
(I,BA−1). Hence, in the case where A is invertible there is no loss of generality in
considering the operator HI,B(V ), with the boundary condition

ψ′(0) = Bψ(0). (1.8)

Observe that for the pair (I,B) conditions (1.4), (1.5) just amount to require that B is
selfadjoint. It follow from Theorems 3.11.1 and 4.3.3 of [1] that if the potential satisfies
(1.2) the operator HI,B(V ) has no singular continuous spectrum, that its absolutely
continuous spectrum is [0,∞), and that it has no positive eigenvalues. Further, zero can
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be an eigenvalue, and there are N negative eigenvalues λj , with multiplicity mj ≤ n,
for j = 1, . . . The number of negative eigenvalues N can be zero, finite, or infinite.
If there are an infinite number of negative eigenvalues they accumulate at zero. Our
reverse Lieb–Thirring inequality is given in the following theorem.

Theorem 1.1. Let HI,B(V ) be the selfadjoint realization in L2(R+,Cn) of the for-
mal matrix Schrödinger operator (1.1) with the boundary condition (1.8) where B
is a selfadjoint matrix, and the potential V is selfadjoint and fulfills (1.2). Assume
that HI,B(V ) has negative eigenvalues λj, for j = 1, . . . Then, the following reverse
Lieb–Thirring inequality holds,

∑

j

mj

√
|λj | > 1

4


−

∞∫

0

Tr [V (x)] dx− Tr[B]


 , (1.9)

where the constant 1/4 is sharp.

In the scalar case, n = 1, Theorem 1.1 is given in [6] assuming that V is integrable
and that there is only a finite number of negative eigenvalues, λj , for j = 1, . . . , N < ∞.
In our Theorem 1.1 the number of negative eigenvalues is allowed to be infinite. The
proof of (1.9) in the scalar case given in [6] is based in the classical results of the scalar
Gel’fand–Levitan method [13, 19, 20, 22], and among other results, in Lemma 2 of [6].
For the proof of Lemma 2 of [6] it is claimed that the difference between a potential
and the potential obtained after removing one eigenvalue is monotonic for large x. See
however, the comments in page 55 of [24] concerning the validity of the monotonicity
claimed in the proof of Lemma 2 of [6]. In our proof of Theorem 1.1 we proceed
in a different way. We first prove that the proof of Theorem 1.1 can be reduced to
the proof in the particular case of potentials of compact support. Then, we prove
Theorem 1.1 for potentials of compact support using our results in transformations to
remove eigenvalues of matrix Schrödinger operators on the half-line [2]. The paper is
organized as follows. In Section 2 we state results from [1] on the matrix Schrödinger
operator on the half-line that we use. In Section 3 we state the results from [2] in
transformations to remove eigenvalues that we need. Finally, in Section 4 we prove
Theorem 1.1.

The matrix Schrödinger equations have been studied since the early days of
quantum mechanics. They are essential to consider properties of particles, such as spin,
as well as to consider collections of particles. They have applications, for example, in
nuclear, atomic, and molecular physics. An important example is the Pauli equation,
that is the Schrödinger equation of a spin one half particle. For these applications
see, for example, the monographs [8] and [18]. The theory of quantum graphs gave
a new impetus to the interest in matrix Schrödinger equations. Quantum graphs have
important applications in several areas, including nanotechnology, quantum wires,
and quantum computing. A star graph, that is to say a quantum graph with only
one vertex, and a finite number of semi-infinite edges that meet at the vertex, is the
particular case of a matrix Schrödinger equation where the potential V is a diagonal
matrix. For a general introduction to quantum graphs, as well as for many results
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and applications, the readers can consult the monographs [5, 17]. In the monograph
[1] the readers can find more information about applications of matrix Schrödinger
equations, as well as on the literature.

2. THE HALF-LINE MATRIX SCHRÖDINGER EQUATION

In this section we introduce preliminary results that we need later. In [1] the readers
can find further information on the half-line matrix Schrödinger equation. Consider
the half-line matrix Schrödinger equation,

−ψ(x)′′ + V (x)ψ(x) = k2ψ(x), k ∈ C, x ∈ R+, (2.1)

where the prime denotes the x-derivative, the potential V (x) is an n× n selfadjoint
matrix-valued function of x. The wavefunction ψ(x) is either an n × n matrix or
a column vector with n components. We denote R+ := (0,∞). The selfadjointness of
the potential means that,

V (x)† = V (x), x ∈ R+. (2.2)

By the dagger we denote the matrix adjoint. We always assume that the potential
V is integrable, i.e. it satisfies (1.2). In some cases we suppose that the potential V
belongs to the Faddeev class L1

1(R+). Namely, that,
∞∫

0

dx (1 + x)|V (x)| < ∞.

We use C+ to denote the upper half of the complex plane C, and use R for the real
axis. We let C+ := C+ ∪ R.

As we already mentioned in the introduction, we denote by HA,B(V ) the selfadjoint
realization in L2(R+,Cn) of the formal matrix Schrödinger operator − d2

dx2 +V (x) with
the boundary condition (1.3), where the boundary matrices A,B satisfy (1.4), (1.5).

Of particular importance are the following two matrix solutions to (2.1). The first
one is the Jost solution f(k, x) that satisfies the asymptotic condition

f(k, x) = eikx [I + o(1)] , f ′(k, x) = eikx [ikI + o(1)] , x → ∞, (2.3)

for k ∈ C+ \ {0}. We denote by I the n× n identity matrix. Further, if V ∈ L1
1(R+)

the Jost solution exists also at k = 0. The second important matrix solution to (2.1)
is the regular solution φ(k, x), k ∈ C that satisfies the initial conditions

φ(k, 0) = A, φ′(k, 0) = B. (2.4)

Recall that A and B are the boundary matrices appearing in (1.3). Note that f(k, x)
does not satisfy, in general, the boundary condition (1.3). However, the regular solution
φ(k, x) does satisfy (1.3).
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We define the Jost matrix associated with (1.3) (2.1) as follows.

J(k) := f(−k∗, 0)† B − f ′(−k∗, 0)† A, k ∈ R \ {0}. (2.5)

The asterisk denotes complex conjugation. If V ∈ L1
1(R+) the Jost matrix can be

defined also at k = 0. The Jost matrix is an n × n matrix-valued function of k.
Moreover, it has an extension to C+, where the asterisk in (2.5) is used to indicate
how that extension occurs.

We discuss now the bound states of the half-line matrix Schrödinger operator. For
a given k a bound-state solution corresponds to a square integrable, column-vector
solution to (2.1) that satisfies the boundary condition (1.3). We denote λ := k2,
k ∈ C+. The real number λ = k2 is an eigenvalue of HA,B(V ) if an only if for the
corresponding k (2.1) has a bound-state solution. By Theorem 3.11.1 of [1], there are
no bound states when λ > 0, but it is possible that there is a bound state at λ = 0.
Further, if V ∈ L1

1(R+) by Theorem 3.11.1 of [1] for λ = 0 there is no bound state, and
the number of negative bound states is finite. Moreover, the multiplicity of the bound
states is smaller or equal to n. The bound states when λ < 0 appear at the k-values
on the positive imaginary axis of the complex k-plane that correspond to the zeros of
det[J(k)]. We use det[J(k)] to designate the determinant of the Jost matrix J(k). We
suppose that there are N zeros of det[J(k)] that appear when k = iκj for j = 1, . . .,
with κj being distinct positive numbers. Remark that N is equal to the number of
negative bound states without counting multiplicities. The quantity N can be zero,
a positive number or ∞. Hence, det[J(iκj)] = 0 and we denote by mj the dimension
of Ker[J(iκj)]. The quantity mj coincides with the multiplicity of the bound state
at k = iκj .

Following [2], we use the Gel’fand–Levitan theory to analyze the bound-state
solutions to (2.1) In this theory the normalization matrices for the bound states are
obtained by normalizing the regular solution φ(k, x) at the bound states. We denote
by Cj and Φj(x) the Gel’fand–Levitan normalization matrix and the corresponding
normalized matrix solution at the bound state with k = iκj , respectively. We proceed
to define the n× n matrices Cj and Φj(x) following [2]. Let us use Qj to denote the
orthogonal projection onto Ker[J(iκj)]. The Gel’fand–Levitan bound-state normalized
solution to the Schrödinger equation is defined as follows,

Φj(x) := φ(iκj , x)Cj ,

where the Gel’fand–Levitan normalization matrix Cj is defined below. Each of Cj is
a nonnegative matrix of rank mj , such that Φj(x) is square-integrable, and moreover,

Φj(x) = O(e−κjx), x → ∞.

By (2.4), Φj(x) satisfies (1.3). We also have that the following normalization condi-
tions hold,

∞∫

0

dxΦj(x)† Φl(x) = Qjδj,l, j, l = 1, . . . , (2.6)



Reverse Lieb–Thirring inequality for the half-line matrix Schrödinger operator 905

where we denote by δj,l the Kronecker delta. To construct the n× n Gel’fand–Levitan
normalization matrix Cj we define the n× n matrix Gj as

Gj :=
∞∫

0

dxQj φ(iκj , x)† φ(iκj , x)Qj . (2.7)

By Theorem 3.11.1 (e) of [1] the integral in the right-hand side of (2.7) is finite.
Further, we introduce the matrix Hj as

Hj := I −Qj + Gj . (2.8)

Both Gj and Hj are selfadjoint. Moreover, Hj is a positive matrix, and we denote
by H1/2

j its unique positive square root. Furthermore, Hj sends QjCn into QjCn and
the restriction of Hj to QjCn is also positive. The Gel’fand–Levitan normalization
matrix Cj is defined as

Cj := H−1/2
j Qj , j = 1, . . . (2.9)

We have that Cj is selfadjoint and nonnegative, and it has rank equal to mj , the same
as the rank of Qj . Moreover,

QjCj = CjQj = Cj , j = 1, . . . (2.10)

3. TRANSFORMATION TO REMOVE A BOUND STATE

In this section we state results from Section 6 of [2] in a transformation to remove
a bound state. We state the results for integrable potentials with compact support,
that is the case that we use in this paper. For more general results see Section 6 of [2].
We remove any one of the bound states with λ = λj , where λj := −κ2

j , and with the
Gel’fand–Levitan normalization matrix Cj . Note that as we do not order the distinct
positive constants κj in any particular way, without loss of generality we can suppose
that we remove the bound state with k = iκN and the Gel’fand–Levitan normalization
matrix CN . After that, we obtain the perturbed Schrödinger operator with the potential
Ṽ (x), the boundary matrices Ã and B̃, the regular solution φ̃(k, x), the Jost matrix
J̃(k), and N−1 bound states with eigenvalues −κ̃2

j , the Gel’fand–Levitan normalization
matrices C̃j , the orthogonal projections Q̃j onto Ker[J̃(iκj)], the Gel’fand–Levitan
normalized bound-state solutions Φ̃j(x), and the multiplicities m̃j of the bound states,
for j = 1, . . . , N − 1. In the next theorem, that summarizes results from Section 6 of
[2] in the case of potentials with compact support, we express the perturbed quantities
distinguished with a tilde in terms of the unperturbed quantities not containing the
tilde and the perturbation identified with κN and CN . However, before we state
the theorem we introduce the Moore–Penrose inverse.

We designate by M+ the Moore–Penrose inverse of a matrix M , [4, 7]. We only
deal with Moore–Penrose inverses of square matrices. As stated in Definitions 1.12
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and 1.13 and Theorem 1.1.1 of [7], the matrix M+ is the Moore–Penrose inverse of
the matrix M if the following four equalities are fulfilled:

{
MM+M = M, M+MM+ = M+,

(MM+)† = MM+, (M+M)† = M+M.
(3.1)

Theorem 3.1. Consider the unperturbed Schrödinger operator with the potential V
satisfying (1.2), (2.2), and with support in the interval [0, x0]. Further, the selfadjoint
boundary condition (1.3) is described by the boundary matrices A and B satisfying (1.4)
and (1.5), with the regular solution φ(k, x) satisfying the initial conditions (2.4), the
Jost solution f(k, x) satisfying (2.3), the Jost matrix J(k) defined in (2.5), containing
N ≥ 1 bound states with eigenvalues λj = −κ2

j , the Gel’fand–Levitan normalization
matrices Cj , the orthogonal projections Qj onto Ker[J(iκj)], and the Gel’fand–Levitan
normalized bound-state solutions Φj(x) for 1 ≤ j ≤ N . Let us denote by WN (x),

WN (x) :=
∞∫

x

dzΦN (z)† ΦN (z), (3.2)

and define the matrix-valued perturbed potential Ṽ (x) as

Ṽ (x) := V (x) + 2 d

dx

[
ΦN (x)WN (x)+ ΦN (x)†]

, (3.3)

where we recall that WN (x)+ denotes the Moore–Penrose inverse of WN (x). Then,
we have:
(a) The perturbed potential Ṽ (x) appearing in (3.3) satisfies (1.2) and(2.2). Moreover,

its support is contained in the interval [0, x0].
(b) The quantity

φ(k, x) = φ̃(k, x) + ΦN (x)WN (x)+
x∫

0

dyΦN (y)†φ̃(k, y)dy,

is a solution to (2.1) with the potential (3.3).
(c) For k ̸= ±iκN , the perturbed quantity φ̃(k, x) can be expressed as

φ̃(k, x) = φ(k, x) + 1
k2 + κ2

N

ΦN (x)WN (x)+ [
Φ′

N (x)† φ(k, x) − ΦN (x)† φ′(k, x)
]
.

(d) Under the perturbation, the projection matrices Qj for 1 ≤ j ≤ N − 1 remain
unchanged, i.e. we have

Q̃j = Qj , 1 ≤ j ≤ N − 1.

(e) Under the perturbation, the Gel’fand–Levitan normalization matrices for
1 ≤ j ≤ N − 1 remain unchanged, i.e. we have

C̃j = Cj , 1 ≤ j ≤ N − 1.
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(f) The perturbed quantity φ̃(k, x) satisfies the initial conditions (2.4) with A, B
replaced by Ã, B̃, respectively, and where the matrices Ã and B̃ are expressed in
terms of the unperturbed boundary matrices A and B and the Gel’fand–Levitan
normalization matrix CN for the bound state at k = iκN as

Ã = A, B̃ = B +AC2
NA

†A. (3.4)

(g) The matrices Ã and B̃ appearing in (3.4) satisfy (1.4) and (1.5). Hence, as
a consequence of (b) and (f), the quantity φ̃(k, x) is the regular solution to the
matrix Schrödinger equation with the potential Ṽ (x) in (3.3) and with the selfadjoint
boundary condition (1.3) with A and B replaced with Ã and B̃, respectively.

(h) Under the perturbation, the determinant of the Jost matrix is transformed as

det[J̃(k)] =
(
k + iκN

k − iκN

)mN

det[J(k)], k ∈ C+,

where we recall that mN is the multiplicity of the bound state of the unperturbed
problem at k = iκN .

(i) Under the perturbation, the bound state with eigenvalue λN = −κ2
N is removed

without adding any new bound states in such a way that the remaining bound
states with eigenvalues λj = −κ2

j and their multiplicities mj for 1 ≤ j ≤ N − 1
are unchanged.

(j) Under the perturbation the absolutely continuous spectrum remains unchanged
and equal to [0,∞). Moreover, the spectral measures for the absolutely continuous
spectrum of the unperturbed and the perturbed problems are the same. For the
definition of the spectral measure see [2].

4. REVERSE LIEB–THIRRING INEQUALITY

In this section we give the proof of Theorem 1.1. We first prove that we can reduce
the problem to the case of potentials with compact support. Recall that by The-
orem 3.11.1 (g) of [1] for potentials in L1

1(R+), and in particular for potentials of
compact support, the number of negative eigenvalues is finite. Let the potential V
belong to L1(R+) and let us denote by V± : 1/2(|V | ± V ), its positive, respectively,
negative part. Hence,

V (x) = V+(x) − V−(x), x ∈ R+.

We denote by χ[0,l](x), l = 1, . . ., the characteristic function of [0, l], and we define,

Vl(x) = V+(x) − χ[0,l](x)V−(x).

Recall that HI,B(V ) is the selfadjoint realization of the matrix Schrödinger operator
− d2

dx2 + V (x) with the boundary condition (1.3) where the boundary matrices I,B
satisfy (1.4), (1.5). Recall that this just amounts to ask that B is selfadjoint. Similarly,
we denote by HI,B(Vl) the matrix Schrödinger operator with the potential V replaced



908 Ricardo Weder

by Vl. Let λj := −κ2
j , for j = 1, . . . be the negative eigenvalues of HI,B(V ), in increasing

order. Recall that mj is the multiplicity of λj . Similarly, we denote by λ(l)
j := −κ2

j,l, for
j = 1, . . . , l = 1, . . ., the negative eigenvalues of HI,B(Vl), also in increasing order, and
by m(l)

j the multiplicity of λ(l)
j . Let µj , for j = 1, . . ., denote the negative eigenvalues

of HI,B(V ), in nondecreasing order and repeated according to its multiplicity. Further,
let µ(l)

j , for j = 1, . . ., designate the negative eigenvalues of HI,B(Vl) in nondecreasing
order and repeated according to its multiplicity. Since HI,B(V ) ≤ HI,B(Vl), it follows
from the min-max principle [23] that

µj ≤ µ
(l)
j , j = 1, . . . . (4.1)

Then, by (4.1),
∑

j

mj

√
|λj | ≥

∑

j

m
(l)
j

√∣∣∣λ(l)
j

∣∣∣, l = 1, . . . . (4.2)

Below we use (4.2) to reduce the proof of the reverse Lieb–Thirring inequality for
HI,B(V ) to the proof of the reverse Lieb–Thirring inequality for HI,B(Vl).

We first prove that HI,B(Vl) has a finite number of negative eigenvalues. Let us
denote

Vl,p := χ[0,p](x)Vl(x), l, p = 1, . . . ,
and by HI,B(Vl,p) the Schrödinger operator defined as HI,B(V ) with the potential Vl,p

instead of V . As Vl,p has compact support the operator HI,B(Vl,p) has a finite number
of negative eigenvalues. We designate by µ(l,p)

j , for j = 1, . . ., the negative eigenvalues
of HI,B(Vl,p) in nondecreasing order and repeated according to its multiplicity. Since
for p ≥ l,HI,B(Vl,p) ≤ HI,B(Vl), by the min-max principle [23]

µ
(l,p)
j ≤ µ

(l)
j , p ≥ l, j = 1, . . . . (4.3)

Assume that for some fixed l = 1, . . . ,HI,B(Vl) has an infinite number of negative
eigenvalues. Then, by min-max principle [23] there would be an infinite number of
negative µ

(l)
j . But by (4.3) this would imply the existence of an infinite number

of negative µ(l,p)
j for all p ≥ l. However, this is impossible, again by the the min-max

principle [23], because as Vl,p has compact support, HI,B(Vl,p) has only a finite number
of negative eigenvalues. It follows that HI,B(Vl) has a finite number of negative
eigenvalues.

We now prove that for l large enough HI,B(Vl) has at least one negative eigenvalue,
using that HI,B(V ) has at least one negative eigenvalue. For this purpose, we prove
that HI,B(Vl) converges to HI,B(V ) in norm resolvent sense. Let us introduce the
polar decomposition for V (x),

V (x) = U(x)V̂ (x),
where U(x) is a partially isometric matrix and V̂ (x) is the absolute value of V (x),
a selfadjoint nonnegative matrix. For a concrete representation of U(x) and of V̂ (x)
see equation (4.2.24) to (4.2.26) of [1]. Further, denote

V (1) :=
√
V̂ (x), V (2) := U(x)

√
V̂ (x).
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We designate by

R0,I,B(z) := (HI,B(0) − z)−1
, z ∈ ρ(HI,B(0)),

the resolvent of HI,B(0), where ρ(HI,B(0)) denotes the resolvent set of HI,B(0).
Further, we introduce the resolvent of HI,B(V ),

RI,B,V (z) := (HI,B(V ) − z)−1
, z ∈ ρ(HI,B(V )),

where ρ(HI,B(V )) denotes the resolvent set of HI,B(V ). Then, by equation (4.2.39)
of [1],

RI,B,V (z) = R0,I,B(z) −R0,I,B(z)
(
I + V (1)R0,I,B(z)V (2)

)−1
R0,I,B(z), (4.4)

for z ∈ ρ(HI,B(0)) ∩ ρ(HI,B(V )). In a similar way, replacing in the formulae above V
by Vl, and HI,B(V ) by HI,B(Vl) we get,

RI,B,Vl
(z) = R0,I,B(z) −R0,I,B(z)

(
I + V

(1)
l R0,I,B(z)V (2)

l

)−1
R0,I,B(z), (4.5)

for z ∈ ρ(HI,B(0)) ∩ ρ(HI,B(Vl)). By equation (4.2.11) of [1], and as V ∈ L1(R+),
the operators

V (1)R0,I,B(z)V (2), V
(1)

l R0,I,B(z)V (2)
l ,

are Hilbert–Schmidt, and

lim
l→∞

V
(1)

l R0,I,B(z)V (2)
l = V (1)R0,I,B(z)V (2), (4.6)

where the limit is in the Hilbert-Schmidt norm. Then, by (4.4),(4.5), and (4.6) HI,B(Vl)
converges in norm resolvent sense to HI,B(V ). The smallest negative eigenvalue of
HI,B(V ) is separated from the rest of the spectrum by a small circle Γ. Then, it follows
from Theorems 2.25 and 3.16, and the comments in Section 5, of Chapter IV, of [16],
that for l large enough HI,B(Vl) has at least one negative eigenvalue inside the circle Γ.

We now prove that we can reduce the proof of the reverse Lieb–Thirring inequality
for HI,B(Vl) to the proof of the reverse Lieb–Thirring inequality for HI,B(Vl,p). For
this purpose we observe that for each fixed l the operator HI,B(Vl,p) converges to
HI,B(Vl) as p → ∞ in norm resolvent sense. The proof is the same as the proof that
HI,B(Vl) converges to HI,B(V ) as l → ∞ in norm resolvent sense that we gave above.
Take any ε > 0 small enough so that each negative eigenvalue λ(l)

j is separated by
an open disk of center λ(l)

j and radius ε from the rest of the spectrum. Note that this
is possible because HI,B(Vl) has a finite number of negative eigenvalues. Hence, using
again Theorems 2.25 and 3.16, and the comments in Section 5, of Chapter IV, of [16],
we get that for p large enough, inside the disk of center λ(l)

j and radius ε the operator
HI,B(Vl,p) has a finite number of negative eigenvalues of total multiplicity m(l)

j and
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outside the union of these open disks HI,B(Vl,p) has no negative eigenvalues. Since ε
can be chosen arbitrarily small we have,

lim
p→∞

∑

j

m
(l,p)
j λ

(l,p)
j =

∑

j

m
(l)
j λ

(l)
j , (4.7)

where we denote byλ(l,p)
j , for j = 1, . . . the negative eigenvalues of HI,B(Vl,p), in increas-

ing order, and by m(l,p)
j , for j = 1, . . . the multiplicity of the negative eigenvalue λ(l,p)

j .
Below we prove the reverse Lieb–Thirring inequality for HA,B(Vl,p), and we use (4.7)
to obtain the reverse Lieb–Thirring inequality for HI,B(Vl).

Removing the negative eigenvalues of HI,B(Vl,p), one by one, as in Theorem 3.1,
we obtain the operator HI,B̃(Ṽl,p) with no negative eigenvalues, where

Ṽl,p(x) = Vl,p(x) + 2
∑

j

d

dx

[
Φ(l,p)

j (x)
(
W

(l,p)
j (x)

)+ (
Φ(l,p)

j (x)
)†]

, (4.8)

where Φ(l,p)
j (x) is the Gel-fand–Levitan normalized matrix solution for the eigenvalue

λ
(l,p)
j = −

(
κ

(l,p)
j

)2
of HI,B(Vl,p), and W (l,p)

j (x) is defined as in (3.2), but with Φ(l,p)
j (x)

instead of ΦN (x). Further,

B̃ = B +
∑

j

[
C

(l,p)
j

]2
, (4.9)

where C(l,p)
j is the Gel-fand–Levitan normalization matrix for the negative eigenvalue

λ
(l,p)
j of HI,B(Vl,p). Note that by (2.6)

W
(l,p)
j (0) = Q

(l,p)
j , j = 1, . . . , (4.10)

with Q
(l,p)
j the orthogonal projection onto the kernel of J (l,p)

(
iκ

(l,p)
j

)
. The quantity

J (l,p)(k) is the Jost matrix of HI,B(Vl,p). Further, we used that
(
Q

(l,p)
j

)+
= Q

(l,p)
j

as it can be easily verified using the definition (3.1) and that Q(l,p)
j is an orthogonal

projection. Moreover, by equations (6.98), (6.99), (6.108), and (6.110) of [2],

lim
x→∞

[
Φ(l,p)

j (x)
(
W

(l,p)
j (x)

)+
Φ(l,p)

j (x)†
]

= 2κ(l,p)
j P

(l,p)
j , j = 1, . . . , (4.11)

where P
(l,p)
j is the orthogonal projection onto the kernel of

(
J (l,p)

(
iκ

(l,p)
j

))†
.

The dimension of Ker
[(
J (l,p)

(
iκ

(l,p)
j

))†]
is m(l,p)

j , that is also the dimension of

Ker
[
J (l,p)

(
iκ

(l,p)
j

)]
.
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By (2.10), (4.8), (4.10), and (4.11),
∞∫

0

Ṽl,p(x) dx =
∞∫

0

Vl,p(x) dx− 2
∑

j

[
C

(l,p)
j

]2
+ 4

∑

j

√∣∣∣λ(l,p)
j

∣∣∣P (l,p)
j . (4.12)

For later use we prove that
∞∫

0

Tr[Ṽl,p(x)] dx+ Tr[B̃] ≥ 0. (4.13)

This statement was proved in the scalar case in [6] using results in the Gel’fand-Levitan
method that are known in the scalar case. Here we prove that (4.13) is an immediate
consequence of the fact that asHI,B̃(Ṽl,p) has no negative eigenvalues it is a nonnegative
operator. Let us denote by H1(R+,Cn) the Sobolev space of all functions in L2(R+,Cn),
with the first derivative in L2(R+,Cn). Then, the quadratic form of HI,B̃(Ṽl,p) is
given by

qI,B̃,Ṽl,p
(ϕ, ψ) :=

n∑

i=1

(
ϕ′

j , ψ
′
j

)
+ (Ṽl,pϕ, ψ) +ϕ†(0)B̃ψ(0), ϕ, ψ ∈ H1(R+,Cn), (4.14)

with domain H1(R+,Cn). Let f ∈ C1([0,∞)) be real valued and satisfy f(x) = 1,
0 ≤ x ≤ 1, f(x) = 0, x ≥ 2. For r = 1, . . . , n, s = 1, . . ., denote

ϕ(r,s) := (0, . . . , f(x/s), 0, . . . , 0)T ,

with f(x/s) in the r position. Moreover, since HI,B̃(Ṽl,p) has no negative eigenvalues
the quadratic form (4.14) is nonnegative, and hence,

qI,B̃,Ṽl,p
(ϕ(r,s), ϕ(r,s)) := 1

s

∞∫

0

(f ′(y))2 dy+
∞∫

0

(
Ṽl,p

)
r,r

(x) f2(x/s) dx+B̃r,r ≥ 0, (4.15)

where we denote by
(
Ṽl,p

)
r,r

(x) the r, r entry of Ṽl,p(x), and by B̃r,r the r, r entry
of B. Taking the limit as s → ∞ in (4.15) we get,

∞∫

0

dx
(
Ṽl,p

)
r,r

(x) + B̃r,r ≥ 0, r = 1, . . . , n. (4.16)

Equation (4.13) follows from (4.16). Furthermore, by (4.9), (4.12) and (4.13),

∑

j

m
(l,p)
j

√∣∣∣λ(l,p)
j

∣∣∣ ≥ 1
4


−

∞∫

0

Tr [Vl,p(x)] dx− Tr[B] +
∑

j

Tr
[(
C

(l,p)
j

)2
]
 . (4.17)

We now prove that the last term in the right-hand side of (4.17) is bounded below by
a positive constant uniformly in l and p. For this purpose, it is enough to prove that
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this is so for Tr
[(
C

(l,p)
1

)2
]
. Let v(l,p)

j , for j = 1, . . . ,m(l,p)
1 be an orthonormal basis

of the kernel of J l,p

(
i

√
|λ(l,p)

1 |
)

. Then,

Q
(l,p)
1 =

m
(l,p)
1∑

j=1
v

(l,p)
j

(
v

(l,p)
j

)†
.

Let us denote by φ(l,p)(k, x), respectively, f (l,p)(k, x), the regular solution and
the Jost solution for the potential Vl,p with the boundary condition (1.8). By
Theorem 3.11.1 of [1],

φ(l.p)
(
i

√
|λ(l,p)

1 |, x
)
Q

(l,p)
1 =

m
(l,p)
1∑

j=1
f (l.p)

(
i

√
|λ(l,p)

1 |, x
)
ω

(l,p)
j

(
v

(l,p)
j

)†
, (4.18)

where w(l,p)
j belongs to the kernel of J l,p

(
i

√
|λ(l,p)

1 |
)†

, and

φ(l.p)
(
i

√
|λ(l,p)

1 |, x
)
v

(l,p)
j = f (l.p)

(
i

√
|λ(l,p)

1 |, x
)
w

(l,p)
j , j = 1, . . . ,m(l,p)

1 .

It follows from the proof of Proposition 3.2.1 of [1] that the Jost solution

f (l,p)
(
i

√
|λ(l,p)

1 |, x
)

satisfies (2.3) with the o(1) uniform in l, p = 1, . . . Further,

it follows from the proof of Proposition 3.2.9 of [1] that the regular solution

φ(l.p)
(
i

√
|λ(l,p)

1 |, x
)

is bounded in any interval [0, x0], x0 > 0, uniformly for all

l, p = 1, . . . Take an x0 so large that f (l,p)
(
i

√
|λ(l,p)

1 |, x0

)
is invertible and |o(1)| < 1/2.

Then,

w
(l,p)
j = f (l,p)

(
i

√
|λ(l,p)

1 |, x0

)−1
φ(l.p)

(
i

√
|λ(l,p)

1 |, x
)
v

(l,p)
j . (4.19)

It follows from (4.19) that

|w(l,p)
j | ≤ C, j = 1, . . .m(l,p)

1 , (4.20)

where the constant C is uniform in l, p = 1 . . . Then, by (2.3), (2.7), (4.18), and (4.20),

|G(l,p)
1 | ≤ C, (4.21)

where the constant C is uniform in l, p = 1 . . . Further, by (2.8), (2.9), and (4.21),

Tr
[
C

(l,p)
1

]2
≥ δ > 0, (4.22)
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where the positive constant δ is uniform on l, p = 1, . . . By (4.17) and (4.22),

∑

j

m
(l,p)
j

√∣∣∣λ(l,p)
j

∣∣∣ ≥ 1
4


−

∞∫

0

Tr [Vl,p(x)] dx− Tr[B] + δ


 . (4.23)

Moreover, by (4.7) and (4.23),

∑

j

m
(l)
j

√∣∣∣λ(l)
j

∣∣∣ ≥ 1
4


−

∞∫

0

Tr [Vl(x)] dx− Tr[B] + δ


 . (4.24)

Finally, by (4.2) and (4.24),

N∑

j=1
mj

√
|λj | > 1

4


−

∞∫

0

Tr [Vl(x)] dx− Tr[B]


 .

Let us prove that the constant 1/4 in (1.9) is sharp. We consider the matrix Schrödinger
operator HI,0(0) with the Neumann boundary condition ψ′(0) = 0, and potential
identically zero. The operator HI,0(0) has no eigenvalues. Then, using the results
in Section 8 of [2] we add to HI,0(0) a negative eigenvalue, λ1 = −κ2

1, κ1 > 0, with
multiplicity m1 and with Gel’fand–Levitan norming constant C1, to obtain the matrix
Schrödinger operator HI,B(V ) with B = −C2

1 , and where V is integrable, and it
satisfies V (x) = O(xe−2κ1x), x → ∞. By equations (8.17), (8.22), (8.37), (8.51),
and (8.54) of [2], since B = −C2

1 , and as we added a bound state to the identically
zero potential,

√
|λ1|P1 = 1

4


−

∞∫

0

V (x) dx−B + C2
1


 , (4.25)

where we used that the orthogonal projection, Q1, onto the kernel of the Jost matrix,
J(k), of HI,B(V ) at k = iκ1, satisfies Q1 = Q+

1 . Recall that P1 is the orthogonal
projection onto the kernel of J(iκ1)†. Taking traces in both sides of (4.25) we obtain

m1
√

|λ1| = 1
4


−

∞∫

0

Tr[V ](x) dx− Tr[B] + Tr[C2
1 ]


 . (4.26)

Assume that (1.9) holds with 1/4 replaced by 1/α, with 0 < α < 4, that is to say,

m1
√

|λ1| > 1
α


−

∞∫

0

Tr [V (x)] dx− Tr[B]


 . (4.27)

Then, by (4.26) and (4.27),
(

1
4 − 1

α

) 
−

∞∫

0

Tr[V ](x) dx− Tr[B]


 + 1

4 Tr[C2
1 ] > 0. (4.28)
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Introducing (4.26) in the left-hand side of (4.28) we get
(

1
4 − 1

α

) [
4m1

√
|λ1| − Tr

[
C2

1
]]

+ 1
4 Tr

[
C2

1 ]
]
> 0. (4.29)

Keeping λ1 and m1 fixed, and taking Tr[C2
1 ] small enough we reach a contradiction

in (4.29). This proves that the constant 1/4 in (1.9) is sharp. In the scalar case a similar
argument was used in [6]. This completes the proof of Theorem 1.1.
Remark 4.1. As mentioned in the introduction taking the boundary matrix A
invertible in the boundary condition (1.3) amounts to exclude Dirichlet boundary
conditions in the diagonal representation where the boundary matrices are given
by Â, B̂. Formally the purely Dirichlet boundary condition ψ(0) = 0 corresponds
to taking B → ∞ in which case the reverse Lieb–Thirring inequality amounts to∑

j

√
|λj | > −∞, which is, of course, trivially always satisfied. Moreover, as is well

known, in the case of the purely Dirichlet boundary condition in the small coupling
constant limit there are no bound states. For the reader’s convenience we give the simple
proof of this fact assuming that the potential belongs to the Faddeev class L1

1(R+).
Consider the matrix Schrödinger operator with purely Dirichlet boundary condition

H0,I(β Q), where the coupling constant β is a real number and the selfadjoint matrix
potential Q ∈ L1

1(R+). Let us denote by H1
0 (R+,Cn) the completion of C∞

0 (R+,Cn)
in the norm of H1(R+,Cn). The quadratic form of H0,I(β Q) is given by

q0,I,β Q(ϕ, ψ) :=
n∑

i=1

(
ϕ′

j , ψ
′
j

)
+ β(Qϕ,ψ), ϕ, ψ ∈ H1

0 (R+,Cn). (4.30)

As for ϕ ∈ H1
0 (R+,Cn) we have ϕ(0) = 0,

ϕj(x) =
x∫

0

ϕj(y)′ dy, j = 1, . . . , n.

Then, by Schwarz’s inequality,

|ϕj(x)| ≤ ∥ϕ′
j∥L2(R+)

√
x, j = 1, . . . , n. (4.31)

Moreover, by (4.30) and (4.31)

q0,I,βQ(ϕ, ϕ) ≥
[

n∑

i=1

(
ϕ′

j , ϕ
′
j

)
] 

1 − |β|
∞∫

0

x |V (x)| dx


 , ϕ ∈ H1

0 (R+,Cn).

It follows that
q0,I,β Q(ϕ, ϕ) ≥ 0,

if

1 − |β|
∞∫

0

x |V (x)| dx ≥ 0.
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Finally, H0,I(βQ) has no negative eigenvalues if (4.1) holds.
In conclusion, we have excluded Dirichlet boundary conditions to obtain a mean-

ingful reverse Lieb–Thirring inequality.
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