PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of a hybrid culture system with a stationary layer of liquid perfluorochemical applied as oxygen carrier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical model of a hybrid culture system supported with a stationary layer of liquid perfluorochemical (PFC) as a source of O2 for cells which grow in the aqueous phase of culture medium has been developed and discussed. The two-substrate Monod kinetics without inhibition effects, i.e. the Tsao-Hanson equation, has been assumed to characterise the biomass growth. The Damköhler number which relates the growth rate to the mass transfer effects has been used to appraise the regime (i.e. diffusion-limited or kinetics) of the whole process. The proposed model predicted accurately previously published data on the submerged batch cultures of Nicotiana tabacum BY-2 heterotrophic cells performed in a culture system supported with a stationary layer of hydrophobic perfluorodecalin as a liquid O2 carrier. Estimated values of the parameters of the model showed that the process proceeded in the kinetics regime and the growth kinetics, not the effects of the mass transfer between aqueous phase and liquid PFC, had essential influence on the growth of biomass.
Rocznik
Strony
149--158
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Amaral P.F.F., Freire M.G., Rocha-Leao M.H.M., Marrucho I.M., Coutinho J.A.P., Coelho M.A.Z., 2007.
  • 2. Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnol. Bioeng., 99, 588-598. DOI: 10.1002/bit.21640.
  • 3. Davey M.R., Anthony P., Power J.B., Lowe K.C., 2005. Plant protoplast technology: Current status. Acta Physiol. Plant., 27, 117-129. DOI: 10.1007/s11738-005-0044-0.
  • 4. Dragoi E. N., Curteanu S., Leon F., Galaction A. I., Cascaval D., 2011. Modeling of oxygen mass transfer in the presence of oxygen-vectors using neural networks developed by differential evolution algorithm. Eng. Appl. Artif. Intel., 24, 1214-1226. DOI: 10.1016/j.engappai.2011.06.004.
  • 5. Garcia-Ochoa F., Gomez E., Santos V.E., Merchuk J.C., 2010. Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J., 49, 289-307. DOI: 10.1016/j.bej.2010.01.011.
  • 6. Hillig F., Pilarek M., Junne S., Neubauer P., 2014. Cultivation of marine microorganisms in single-use systems. Adv. Biochem. Eng. Biotechnol., 138, 179-206. DOI: 10.1007/10_2013_219.
  • 7. Lowe K.C., 2002. Perfluorochemical respiratory gas carriers: Benefits to cell culture systems. J. Fluor. Chem., 118, 19-26. DOI: 10.1016/S0022-1139(02)00200-2.
  • 8. Martin M., Montes F.J., Galan M.A., 2010. Mass transfer rates from bubbles in stirred tanks operating with viscous fluids. Chem. Eng. Sci., 65, 3814-3824. DOI: 10.1016/j.ces.2010.03.015.
  • 9. Ntwampe S.K.O., Williams C.C., Sheldon M. S., 2010. Water-immiscible dissolved oxygen carriers in combination with Pluronic F 68 in bioreactors. Afr. J. Biotechnol., 9, 1106-1114. DOI: 10.5897/AJB09.1007.
  • 10. Pilarek M., 2014. Liquid perfluorochemicals as flexible and efficient gas carriers applied in bioprocess engineering: and updated overview and future prospects. Chem. Process Eng., 35, 463-487. DOI: 10.2478/cpe-2014-0035.
  • 11. Pilarek M., Grabowska I., Ciemerych M. A., Dąbkowska K., Szewczyk K.W., 2013. Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol. Lett., 35, 1387-1394. DOI 10.1007/s10529-013-1218-2.
  • 12. Pilarek M., Grabowska I., Senderek I., Wojasiński M., Janicka J., Janczyk-Ilach K., Ciach T., 2014. Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess Biosyst. Eng., 37, 1707-1715. DOI: 10.1007/s00449-014-1143-3.
  • 13. Pilarek M., Szewczyk K. W., 2008. Effects of perfluorinated oxygen carrier application in yeast, fungi and plant cell suspension cultures. Biochem. Eng. J., 41, 38-42. DOI: 10.1016/j.bej.2008.03.004.
  • 14. Riess J.G., 2006a. Perfluorocarbon-based oxygen delivery. Artif. Cells Blood Substit. Immobil. Biotechnol., 34, 567-80. DOI: 10.1080/10731190600973824.
  • 15. van Sonsbeek H.M., van der Tuin S.P., Tramper J., 1992. Mixing in liquid-impelled loop reactors. Biotechnol. Bioeng., 39, 707-716. DOI: 10.1002/bit.260390703.
  • 16. Suresh S., Srivastava V.C., Mishra I.M., 2009. Techniques for oxygen transfer measurement in bioreactors: a review. J. Chem. Technol. Biotechnol., 84, 1091-1103. DOI: 10.1002/jctb.2154.
  • 17. Sykłowska-Baranek K., Pilarek M., Cichosz M., Pietrosiuk A., 2014. Liquid perfluorodecalin application for in situ extraction and enhanced naphthoquinones production in Arnebia euchroma cell suspension cultures. Appl. Biochem. Biotechnol., 172, 2618-2627. DOI: 10.1007/s12010-013-0701-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6081d9fc-36da-40b8-8c4b-c11efb51e7cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.