PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The efficiency of single base and network RTK for Structural Health Monitoring

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the developing technology and increasing construction, the importance of structural observations, which are of great significance in disaster management, has increased. Geodetic methods have been preferred in recent years due to their high accuracy and ease of use in Structural Health Monitoring (SHM) Surveys. In this study, harmonic oscillation tests have been carried out on a shake table to determine the usability of the Single Base and the Network Real-Time Kinematic (RTK) Global Navigation Satellite Systems (GNSS) method in SHM studies. It is aimed to determine the harmonic movements of different amplitudes and frequencies created by the shake table with 20 Hz multi-GNSS equipment. The amplitude and frequency values of the movements created using Fast Fourier Transform (FFT) and Time Series Analysis have been calculated. The precision of the analysis results has been determined by comparing the LVDT (Linear Variable Differential Transformer) data, which is the position sensor of the shake table, with the GNSS data. The advantages of the two RTK methods over each other have been determined using the calculated amplitude and frequency differences. As a result of all experiments, it has been determined that network and single base RTK GNSS methods effectively monitor structural behaviours and natural frequencies.
Rocznik
Strony
art. no. e28, 2022
Opis fizyczny
Bibliogr. 35 poz., fot., tab., wykr.
Twórcy
  • Yildiz Technical Universty, Istanbul, Turkey
  • Yildiz Technical Universty, Istanbul, Turkey
Bibliografia
  • 1. Akpinar, B., and Aykut, N.O. (2017). Determining the Coordinates of Control Points in Hydrographic Surveying by the Precise Point Positioning Method. J. Navig., 70, 1–12. DOI: 10.1017/S0373463317000236.
  • 2. Arslan, N., Aydın C., Üstün, A. et al. (2002). Sanal Referans İstasyonu Sistemi (VRS). In 30th Anniversary Symposium in Geodesy and Photogrammetry Education, 16–18 October, 2002, Selçuk University, Konya.
  • 3. Aykut, N.O., Gülal, E., and Akpinar, B. (2015). Performance of Single base RTK GNSS Method versus Network RTK. Earth Sci. Res. J., 19(2), 135–139. DOI: 10.15446/esrj.v19n2.51218.
  • 4. Bilich, A., Axelrad, P., and Larson, K.M. (2007). Scientific utility of the signal-to-noise ratio (SNR) reported by geodetic GPS receivers. In 20th International Technical Meeting of the Satellite Division of The Institute of Navigation, 25–28 September, 2007, Fort Worth, U.S.
  • 5. Çelebi, M., and Şanlı, A. (2002). GPS in Pioneering Dynamic Monitoring of Long-Period Structures. Earthq. Spectra, 18(1), 47–61. DOI: 10.1193/1.1461375.
  • 6. Dindar, A.A., Akpınar, B., Gurkan, K. et al. (2018). Development of Low-Cost Hybrid Measurement System. In 16th Europen Conference on Earthquake Engineering, 18–21 June, 2018, Thessaloniki, Greece.
  • 7. Erdoğan, H. (2006). Mühendislik Yapılarındaki Dinamik Davranışların Jeodezik Ölçmelerle Belirlenmesi. PhD Thesis, Yıldız Technical University, Institute of Science and Engineering, İstanbul.
  • 8. Erdoğan, H., and Gülal, E. (2013). Ambient Vibration Measurements of the Bosphorus Suspension Bridge by Total Station and GPS. Exp. Tech., 37. DOI: 10.1111/j.1747-1567.2011.00723.x.
  • 9. Eren, K., Uzel, T., Gülal, E. et al. (2009). Results from a Comprehensive GNSS Test in the CORS-TR Network: Case Study. J. Surv. Eng., 135(1). DOI: 10.1061/(ASCE)0733-9453(2009)135:1(10).
  • 10. Gülal, E. (2009). İski Uydu Konum Belirleme Sistemi UKBS kurulmasıve Deformasyon Ölçmeleri Projesi. Technical report. İstanbul, Turkey.
  • 11. Gülal, E., Erdoğan, H., and Tiryakioğlu, İ. (2013). Research on the stability analysis of GNSS reference stations network by time series analysis. Digit. Signal Process., 23, 1945–1957. DOI: 10.1016/j.dsp.2013.06.014.
  • 12. Gülal, E., Dindar, A.A., Akpınar, B. et al. (2015). Analysis and Management of GNSS Reference Station Data. TV.-TG., 22(2), 404–414. DOI: 10.17559/TV-20140717125413.
  • 13. Gorski, P. (2017). Dynamic characteristic of tall industrial chimney estimated from GPS measurement and frequency domain decomposition. Eng. Struct., 148. DOI: 10.1016/j.engstruct.2017.06.066.
  • 14. Hartinger, H. and Brunner, F.K. (1998). Experimental detection of deformations using GPS. Proc. of IAG Special Commission 4 Symposium Eisenstadt, 145–152.
  • 15. Im, S.B, Hurlebaus, S., and Kang, Y.J. (2013). Summary Review of GPS Technology for Structural Health Monitoring. J. Struct. Eng., 139, 1653-1664. DOI: 10.1061/(ASCE)ST.1943-541X.0000475.
  • 16. Kahveci, M., and Yıldız, F. (2001). Global Konum Belirleme Sistemi Teori-Uygulama. Nobel Yayın Dağıtım: Ankara.
  • 17. Karabulut, M.F., Aykut, N.O., Akpınar, B. et al. (2021). The Positioning Performance of Low-Cost Gnss Receivers In Precise Point Positioning Method. In International Symposium on Applied Geoinformatics (ISAG2021), 2–3 December, 2021, Riga, Latvia.
  • 18. Li, X., Ge, L., Ambikairajah, E. et al. (2006). Full-scale structural monitoring using an integrated GPS and accelerometer system. GPS Solut., 10(4), 233–247. DOI: 10.1007/s10291-006-0023-y.
  • 19. Lovse, J.W., Teskey, W.F., Lachapelle, G. et al. (1995). Dynamic Deformation Monitoring of Tall Structure Using GPS Technology. J. Surv. Eng., 121(1), 35-40. DOI: 10.1061/(ASCE)0733-9453(1995) 121:1(35).
  • 20. Meng, X., Dodson, A.H., and Roberts, G.W. (2007). Detecting bridge dynamics with GPS and triaxial accelerometers. Eng. Struct., 29(11), 3178–3184. DOI: 10.1016/j.engstruct.2007.03.012.
  • 21. Moschas, F., and Stiros, S. (2011). Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Eng. Struct., 33(1), 10–17, 3178–3184. DOI: 10.1016/j.engstruct.2010.09.013.
  • 22. Nie, Z., Zhang, R., Liu, G. et al. (2016). GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves. J. Appl. Geophys. 135, 328–337. DOI: 10.1016/j.jappgeo. 2016.10.026.
  • 23. Oku Topal, G., and Akpinar, B. (2022). High rate GNSS kinematic PPP method performance for monitoring the engineering structures: Shake table tests under different satellite configurations. Measurement, 189, 110451. DOI: 10.1016/j.measurement.2021.110451.
  • 24. Önen, Y.H., Dindar, A.A., Gülal, E., et al. (2014). Use of High-Frequency GNSS Sensors in Dynamıc Motions. In Second European Conference on Earthquake Engineering and Seismology, 25–29 August, İstanbul, Turkey.
  • 25. Park, H.S., Sohn H.G., Kim, I.S. (2008). Application of GPS to monitoring of wind-induced responses of high-rise buildings. Struct. Des. Tall Spec. Build., 17(1), 117–132. DOI: 10.1002/tal.335.
  • 26. Paziewski, J., Sieradzki, R., and Baryla, R. (2018). Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacement detection. Meas. Sci. Technol., 29, 035002. DOI: 10.1088/1361-6501/aa9ec2.
  • 27. Rost, C., and Wanninger, L. (2009). Carrier phase multipath mitigation based on GNSS signal quality measurements. J. Appl. Geod., 3(2), 81–87. DOI: 10.1515/JAG.2009.009.
  • 28. Uaratanawong, V., Satirapod, C., and Tsujii, T. (2020). Optimization technique for pseudorange multipath mitigation using different signal selection methods. Artif., 55(2), 77–86. DOI: 10.2478/arsa-2020-0006.
  • 29. UKBS Uydulardan Konum Belirleme Sistemi, (2022). Reterived 8 February 2022 from https://ukbs.iski.gov.tr/ukbs-nedir.aspx.
  • 30. Wang, G., Blume, F., Meertens, C. et al. (2012). Performance of High-rate Kinematic GPS During Strong Shaking: Observations from Shake Table Tests and The 2010 Chile Earthquake. J. Geod. Sci., 2(1), 15–30. DOI: 10.2478/v10156-011-0020-0.
  • 31. Wells, D.E., Beck, N., Delikaraoğlu, D. et al. (1987). Guide To GPS Positioning. Second Edition. Canadian GPS Associates. New Brunswick: Canada.
  • 32. Xu, Y., Brownjohn, J.M.W., Hester, D. et al. (2017). Long-span bridges: Enhanced data fusion of GPS displacement and deck accelerations. Eng. Struct., 147, 639–651. DOI: 10.1016/j.engstruct.2017.06.018.
  • 33. Yıldırım, Ö, Bakıcı, S., and Mekik, Ç. (2011). TUSAGAAKTİF (CORSTR) Sisteminin Tapu ve Kadastro Genel Müdürlüğüne Katkıları. Journal of HKM Jeodezi, Jeoinformasyon ve Arazi Yönetimi, 11(2), 134–139.
  • 34. Yiğit, C.O., Li, X., Inal, C. et al. (2010). Preliminary Evaluation of Precise Inclination Sensor and GPS for Monitoring Full-scale Dynamic Response of a Tall Reinforced Concrete Building. J. Appl. Geod., 4(2), 103–113. DOI: 10.1515/jag.2010.010.
  • 35. Yiğit, C.O., Dindar, A., Bezcioglu, M. et al. (2018). Evaluation of High-Rate GNSS-PPP for Monitoring Structural Health and Seismogeodesy Applications. In XXVI FIG Congress 2018: Proceedings, 6–11 May, 2018, Istanbul, Turkey.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6080d3ef-421b-4680-b17e-40d60e845550
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.