PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Potential method in the coupled linear quasi-static theory of thermoelasticity for double porosity materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper concerns the coupled linear quasi-static theory of thermoelasticity for materials with double porosity under local thermal equilibrium. The system of equations of this theory is based on the constitutive equations, Darcy’s law of the flow of a fluid through a porous medium, Fourier’s law of heat conduction, the equations of equilibrium, fluid mass conservation and heat transfer. By virtue of Green’s identity the uniqueness theorems for classical solutions of the internal and external quasi-static boundary value problems (BVPs) are proved. The fundamental solution of the system of steady vibration equations in the considered theory is constructed and its basic properties are established. Then, the surface and volume potentials are presented and their basic properties are given. Finally, on the basis of these results the existence theorems for classical solutions of the above mentioned BVPs are proved by means of the potential method (boundary integral equation method) and the theory of singular integral equations.
Rocznik
Strony
559--590
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Faculty of Business, Technology and Education, Ilia State University, K. Cholokashvili Ave., 3/5, 0162 Tbilisi, Georgia
Bibliografia
  • 1. M.A. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155–164, 1941.
  • 2. A.H.D. Cheng, Poroelasticity. Theory and Applications of Transport in Porous Media, vol. 27, Springer, Switzerland, 2016.
  • 3. O. Coussy, Mechanics and Physics of Porous Solids, Wiley, Chichester, UK, 2010.
  • 4. A.P.S. Selvadurai, A. Suvorov, Thermo-Poroelasticity and Geomechanics, Cambridge University Press, Cambridge, 2017.
  • 5. H.F. Wang, Theory of Linear Poro-Elasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton, 2000.
  • 6. R.K. Wilson, E.C. Aifantis, On the theory of consolidation with double porosity, International Journal of Engineering Science, 20, 1009–1035, 1982.
  • 7. M. Svanadze, Plane waves and boundary value problems in the theory of elasticity for solids with double porosity, Acta Applicandae Mathematicae, 122, 461–471, 2012.
  • 8. R. Gelet, B. Loret, N. Khalili, Borehole stability analysis in a thermoporoelastic dualporosity medium, International Journal of Rock Mechanics and Mining Sciences, 50, 65–76, 2012.
  • 9. M. Ciarletta, F. Passarella, M. Svanadze, Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity, Journal of Elasticity, 114, 55–68, 2014.
  • 10. M. Svanadze, On the theory of viscoelasticity for materials with double porosity, Discrete and Continuous Dynamical Systems, Series B, 19, 2335–2352, 2014.
  • 11. E. Scarpetta, M. Svanadze, Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity, Journal of Elasticity, 120, 67–86, 2015.
  • 12. E. Scarpetta, M. Svanadze, V. Zampoli, Fundamental solutions in the theory of thermoelasticity for solids with double porosity, Journal of Thermal Stresses, 37, 727–748, 2014.
  • 13. M. Svanadze, S. De Cicco, Fundamental solutions in the full coupled linear theory of elasticity for solid with double porosity, Archives of Mechanics, 65, 367–390, 2013.
  • 14. D. Iesan, R. Quintanilla, On a theory of thermoelastic materials with a double porosity structure, Journal of Thermal Stresses, 37, 1017–1036, 2014.
  • 15. J.W. Nunziato, S.C. Cowin, A nonlinear theory of elastic materials with voids, Archive for Rational Mechanics and Analysis, 72, 175–201, 1979.
  • 16. S.C. Cowin, J.W. Nunziato, Linear elastic materials with voids, Journal of Elasticity, 13, 125–147, 1983.
  • 17. D. Iesan, Method of potentials in elastostatics of solids with double porosity, International Journal of Engineering Science, 88, 118–127, 2015.
  • 18. S. Chirita, A. Arusoaie, Thermoelastic waves in double porosity materials, European Journal of Mechanics – A/Solids, 86, 104177, 2021.
  • 19. S. De Cicco, D. Iesan, On the theory of thermoelastic materials with a double porosity structure, Journal of Thermal Stresses, 44, 1514–1533, 2021.
  • 20. S. De Cicco, Non-simple elastic materials with double porosity structure, Archives of Mechanics, 74, 127–142, 2022.
  • 21. R. Kumar, R. Vohra, M.G. Gorla, Some considerations of fundamental solution in micropolar thermoelastic materials with double porosity, Archives of Mechanics, 68, 263–284, 2016.
  • 22. M. Svanadze, Boundary value problems of steady vibrations in the theory of thermoelasticity for materials with double porosity structure, Archives of Mechanics, 69, 347–370, 2017.
  • 23. M. Svanadze, Steady vibrations problems in the theory of elasticity for materials with double voids, Acta Mechanica, 229, 1517–1536, 2018.
  • 24. M. Ciarletta, D. Iesan, Non-Classical Elastic Solids, Longman Scientific and Technical, John Wiley & Sons, New York, NY, Harlow, Essex, UK, 1993.
  • 25. D. Iesan, Thermoelastic Models of Continua, Springer, Dordrecht, 2004.
  • 26. B. Straughan, Mathematical Aspects of Multi-Porosity Continua. Advances in Mechanics and Mathematics, vol. 38. Springer, Switzerland, 2017.
  • 27. M. Svanadze, Potential method in the coupled linear theory of porous elastic solids, Mathematics and Mechanics of Solids, 25, 768–790, 2020.
  • 28. M. Svanadze, Boundary integral equations method in the coupled theory of thermoelasticity for porous materials, Proceedings ASME, IMECE2019, vol. 9: Mechanics of Solids, Structures, and Fluids, V009T11A033, November 11–14, 2019, doi: 10.1115/IMECE2019-10367.
  • 29. M. Svanadze, Potential method in the coupled theory of elastic double-porosity materials, Acta Mechanica, 232, 2307–2329, 2021.
  • 30. M. Svanadze, On the coupled theory of thermoelastic double-porosity materials, Journal of Thermal Stresses, 45, 576–596, 2022.
  • 31. M. Mikelashvili, Quasi-static problems in the coupled linear theory of elasticity for porous materials, Acta Mechanica, 231, 877–897, 2020.
  • 32. M. Mikelashvili, Quasi-static problems in the coupled linear theory of thermoporoelasticity, Journal of Thermal Stresses, 44, 236–259, 2021.
  • 33. M. Mikelashvili, Potential method in the quasi-static problems of the coupled linear theory of elastic materials with double porosity, Transactions of A. Razmadze Mathematical Institute, 2023 (to be published).
  • 34. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, New York, Oxford, 1979.
  • 35. M. Svanadze, Potential Method in Mathematical Theories of Multi-Porosity Media, Interdisciplinary Applied Mathematics, vol. 51, Springer, Cham, Switzerland, 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-607dee45-aac7-43c1-a357-9873ba5c0aae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.