Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes the application of fractional order controller in position tracking control of 2-link nonlinear robotic arm. The nonlinear system dynamics is linearized using inverse dynamics of the model and fractional order PID controller is designed to deal with remaining tracking errors. The optimal values of controller pa-rameters are calculated using Nelder-Mead optimization technique based on desired design criteria. The objective function is designed using weighted sum approach on each performance specification based on transient domain parameters. It can be seen from simulation results that fractional order controller together with computed torque controller improved tracking performance of proposed system as compared to PID controller used in the outer loop. Moreover, the robustness of proposed scheme is checked by applying the disturbance signal at control input channels of 2-link nonlinear robotic arm links.
Wydawca
Rocznik
Tom
Strony
273--284
Opis fizyczny
Bibliogr. 41 poz., fig., tab.
Twórcy
autor
- University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
autor
- University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
autor
- Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
autor
- University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
autor
- Comsats Institute of Information Technology, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
Bibliografia
- 1. C. T. Kiang, A. Spowage, and C. K. Yoong, Review of Control and Sensor System of Flexible Manipulator. J. Intell. Robot. Syst. Theory Appl., vol. 77, no. 1, pp. 187–213, 2015.
- 2. Green and J. Z. Sasiadek, Fuzzy and optimal control of a two-link flexible manipulator. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. vol. 2, pp. 1169–1174, 2001
- 3. U. Gogoi, Model Predictive Control Of A Two- Link Flexible Manipulator. Department of Electrical Engineering, National Institute of Technology, Rourkela, 2015.
- 4. O. Barambones and V. Etxebarria, Robust neural control for robotic manipulators. Automatica, vol. 8, no. 2, pp. 235–242, 2001.
- 5. He Wei, Shuzhi Sam Ge, Yanan Li, Effie Chew, and Yee Sien Ng. Neural network control of a rehabilitation robot by state and output feedback. Journal of Intelligent & Robotic Systems 80, vol.1, pp. 15–31, 2015.
- 6. Zuo Y, Wang Y, Liu X, Yang SX, Huang L, Wu X, Wang Z., Neural network robust H∞ tracking control strategy for robot manipulators. Appl. Math. Model., vol. 34, no. 7, pp. 1823–1838, 2010.
- 7. H. F. Ho, Y. K. Wong, and A. B. Rad, Robust fuzzy tracking control for robotic manipulators. Simul. Model. Pract. Theory, vol. 15, no. 7, pp. 801–816, 2007.
- 8. K.-C. Chiou and S.-J. Huang, An adaptive fuzzy controller for robot manipulator. Mechatronics, vol. 15, no. 2, pp. 151–177, 2005.
- 9. S. H. Hashemipour, A. Ghoreishi, S. M. Mahdavinasab, and M. N. Moghaddasi, PID Controller for Robotic Manipulator Nonlinear Model and Compare with Sliding Mode Controller. Res.J.Recent Sci, vol. 2, no. 11, pp. 50–54, 2013.
- 10. Z. Song, J. Yi, D. Zhao, and X. Li, A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. Fuzzy Sets Syst., vol. 154, no. 2, pp. 208–226, 2005.
- 11. W. Li, X. G. Chang, F. M. Wahl, and J. Farrell, Tracking control of a manipulator under uncertainty by FUZZY PID controller. Fuzzy Sets Syst., vol. 122, no. 1, pp. 125–137, 2001.
- 12. F. A. T. Al-saedi and A. H. Mohammed, Design and Implementation of PSO-PID Controller for MA2000 Robotic Manipulator. IJCSET, September 2012.
- 13. S. Yamamoto, Present status and future needs: the view from Japanese industry. Proc. of 4th International Conference on Chemical Process Control- CPC IV, CACHE-AIChE, pp. 1–28, 1991.
- 14. R. H. Middleton and G. C. Goodwin, Adaptive Computed Torque Control for Rigid Link Manipu-lators. Syst. Control Lett., vol. 10, no. 1, pp. 9–16, Jan. 1988.
- 15. M. Uebel, I. Minis, and K. Cleary, Improved computed torque control for industrial robots. Proceedings of IEEE International Conference on Robotics and Automation 1992, pp. 528–533 vol.1. 1992
- 16. D. Xue, C. Zhao, and Y. Chen, Fractional order PID control of a DC-motor with elastic shaft: a case study. American Control Conference, p. 6 --pp, 2006.
- 17. S. Karad, S. Chatterji, and P. Suryawanshi, Performance analysis of fractional order PID controller with the conventional PID controller for bioreactor control. Int. J. Sci. Eng. Res., vol. 3, no. 6, pp. 1–6, 2012.
- 18. N. M. F. Ferreira and J. A. T. Machado, Fractional-order hybrid control of robotic manipulators. Proc. 11th Int. Conf. Adv. Robot., vol. 398, no. 3, pp. 393–398, 2003.
- 19. C. I. Muresan, C. Ionescu, S. Folea, and R. De Keyser, Fractional order control of unstable processes: the magnetic levitation study case. Nonlinear Dyn., vol. 80, no. 4, pp. 1761–1772, 2015.
- 20. S. Ijaz, M. T. Humayun, L. Yan, and M. F. Mumtaz, Fractional Order Modeling and Control of Twin Rotor Aero Dynamical System using Nelder Mead Optimization. J Electr Eng Technology, vol. 11, no. 6, pp. 1921–1929, 2016.
- 21. M. A. S. Aboelela, M. F. Ahmed, and H. T. Dorrah, Design of aerospace control systems using frac-tional PID controller. J. Adv. Res., vol. 3, no. 3, pp. 225–232, 2012.
- 22. S. K. Mishra and S. Purwar, To design optimally tuned FOPID controller for twin rotor MIMO sys-tem. 2014 Students Conference on Engineering and Systems (SCES), pp. 1–6, 2014.
- 23. M. F. Silva, J. A. T. Machado, and A. M. Lopes, “Fractional order control of a hexapod robot,” Nonlinear Dyn., vol. 38, no. 1–4, pp. 417–433, 2004.
- 24. L. Bruzzone and P. Fanghella, “Fractional-Order Control of a Micrometric Linear Axis,” J. Control Sci. Eng., vol. 2013, p. 4, 2013.
- 25. R. H. Mohammed, Trajectory Tracking Control for Robot Manipulator using Fractional Order-Fuzzy- PID Controller. International Journal of Computer Applications, vol. 134, no. 15, p. 8887, 2016.
- 26. R. Sharma, P. Gaur, and A. P. Mittal, Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans., vol. 58, pp. 279–291, 2015.
- 27. T. J. E. Eng and C. Sci, Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control. Turkish Journal of Electrical Engineering & Computer Sciences, vol. 20, pp. 1123–1136, 2012.
- 28. H. Delavari, R. Ghaderi, a N. Ranjbar, S. H. Hosseinnia, and S. Momani, Adaptive Fractional PID Controller for Robot Manipulator. Proc. 4th IFAC Work. Fract. Differ. Its Appl., vol. 2010, pp. 1–7, 2010.
- 29. Y. Q. Chen, I. Petráš, and D. Xue, Fractional order control – A tutorial. Proc. Am. Control Conf., no. July, pp. 1397–1411, 2009.
- 30. Lin, Feng. Robust control design: an optimal control approach. Vol. 18. John Wiley & Sons, 2007.
- 31. R. Sharma, P. Gaur, and A. P. Mittal, Optimum Design of Fractional-Order Hybrid Fuzzy Logic Controller for a Robotic Manipulator. Arab. J. Sci. Eng., pp. 739–750, 2016.
- 32. S. Das, S. Saha, S. Das, and A. Gupta, On the Selection of Tuning Methodology of FOPID Control-lers for the Control of Higher Order Processes.ISA transactions, 50(3), pp.376–388. 2012
- 33. B. M. Vinagre, I. Podlubny, A. Hernandez, and V. Feliu, Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal., vol. 3, no. 3, pp. 231–248, 2000.
- 34. Visioli, Practical PID control. Springer Science & Business Media, 2006.
- 35. D. Valério and J. S. da Costa, Tuning of fractional PID controllers with Ziegler--Nichols-type rules. Signal Processing, vol. 86, no. 10, pp. 2771–2784, 2006.
- 36. J. A. Nelder and R. Mead, A simplex method for function minimization. Comput. J., vol. 7, no. 4, pp. 308–313, 1965.
- 37. C. Luo and B. Yu, Low Dimensional Simplex Evolution--A Hybrid Heuristic for Global Optimi-zation. Eightth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, vol. 2, pp. 470–474, 2017.
- 38. Moraglio and C. G. Johnson, Geometric generalization of the nelder-mead algorithm. European Conference on Evolutionary Computation in Combinatorial Optimization, pp. 190–201, 2010.
- 39. N. Ishak, M. Tajjudin, H. Ismail, M. H. F. Rahiman, Y. M. Sam, and R. Adnan, PID studies on position tracking control of an electro-hydraulic actuator. Int. J. Control Sci. Eng., vol. 2, no. 5, pp. 120–126, 2012.
- 40. Tepljakov, E. Petlenkov, and J. Belikov, FOMCON: Fractional-order modeling and control toolbox for MATLAB. Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES) , pp. 684–689, 2011.
- 41. S. Kr and C. E. Manipal, Stability and Performance Analysis of Fractional Order Control Systems. Wseas Transactions on Systems and Control, vol. 9, pp. 438–444, 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-607cffb4-29a9-425e-a334-8da24f5eba90