PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wielozadaniowa optymalizacja bioremediacji wód gruntowych in situ z zastosowaniem hybrydowej techniki metaheurystycznej opartej na zróżnicowanej ewolucji, algorytmach genetycznych i symulowanym wyżarzaniu
Języki publikacji
EN
Abstrakty
EN
Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM) was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE), Non Dominated Sorting Genetic Algorithm (NSGA II) and Simulated Annealing (SA). It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.
PL
Zanieczyszczenie wód gruntowych wyciekami benzyny jest jedną z kilku przyczyn wpływających na środowisko wód podziemnych. W ostatnich latach bioremediacja in situ przyciągała uwagę badaczy z powodu jej zdolności do usuwania zanieczyszczeń w ich siedlisku i niskich kosztów procesu. Przedstawiona praca proponuje użycie nowego algorytmu hybrydowego do optymalizacji wielozadaniowej funkcji, która obejmuje koszty remediacji jako pierwsze zadanie i resztową zawartość zanieczyszczeń po zakończeniu procesu jako drugie z zadań. Algorytm hybrydowy powstał z połączenia metod różnicowej ewolucji, algorytmu genetycznego i symulowanego wyżarzania. Maszyna wektorów nośnych (SVM) została użyta jako wirtualny symulator biologicznej degradacji zanieczyszczeń w wodach gruntowych. Wyniki uzyskane z algorytmy hybrydowego porównano z wynikami zróżnicowanej ewolucji (DE), algorytmu genetycznego (NSGA II) i symulowanego wyżarzania (SA). Stwierdzono, że proponowany algorytm był w stanie zapewnić najlepsze rozwiązanie. Użyto metody z zakresu logiki rozmytej dla znalezienia najlepszego rozwiązania kompromisowego i na końcu przedstawiono dla tego rozwiązania strategię szybkości pompowania celem remediacji wód gruntowych. Wyniki pokazały, że koszty ponoszone na rozwiązanie kompromisowe są pośrednie między najwyższymi i najniższymi kosztami innych rozwiązań.
Wydawca
Rocznik
Tom
Strony
29--40
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • Indian Institute of Technology in Delhi, India
autor
  • Indian Institute of Technology in Delhi, India
autor
  • Indian Institute of Technology in Delhi, India
autor
  • McGill University, Faculty of Agricultural and Environmental Sciences, Department of Bioresource Engineering, Quebec, Canada, H9X 3V9
Bibliografia
  • ABIDO M.A. 2003. Environmental/economic power dispatch using multi-objective evolutionary algorithms. IEEE Transactions on Power Systems. Vol. 18. Iss. 4 p. 1529–1537.
  • ADAMOWSKI J., ADAMOWSKI K., BOUGADIS J. 2010. Influence of trend on short duration design storms. Water Resources Management. Vol. 24 p. 401–413.
  • ADAMOWSKI J., CHAN H., PRASHER S., SHARDA V.N. 2012a. Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan microwatersheds with limited data. Journal of Hydroinformatics. Vol. 3 p. 731–744.
  • ADAMOWSKI J., PROKOPH A. 2013. Assessing the impacts of the urban heat island effect on streamflow patterns in Ottawa, Canada. Journal of Hydrology. Vol. 496 p. 225–237.
  • ADAMOWSKI K., PROKOPH A., ADAMOWSKI J. 2009. Development of a new method of wavelet aided trend detection and estimation. Hydrological Processes. Vol. 23 p. 2686–2696.
  • ADAMOWSKI K., PROKOPH A., ADAMOWSKI J. 2012b. Influence of the 11 year solar cycle on annual streamflow maxima in Canada. Journal of Hydrology. Vol. 442–443 p. 55–62.
  • ALI M., PANT M., ABRAHAM A. 2009. Inserting information sharing mechanism of PSO to improve the convergence of DE. World Congress on Nature and Biologically Inspired Computing. naBIC 2009. Coimbatore, India. 9–11 Dec. 2009. IEE p. 282–287.
  • ARAGHI A., ADAMOWSKI J., NALLEY D., MALARD J. 2015. Using wavelet transforms to estimate surface temperature trends and dominant periodicities in Iran based on gridded reanalysis data. Journal of Atmospheric Research. Vol. 11 p. 52–72.
  • BELAYNEH A., ADAMOWSKI J., KHALIL B., OZGA-ZIELINSKI B. 2014. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet-support vector regression models. Journal of Hydrology. Vol. 508 p. 418–429.
  • BLUM C. 2005. Beam-ACO–hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers and Operations Research. Vol. 32. Iss. 6 p. 1565–1591.
  • BORDEN R.C., BEDIENT P.B. 1986. Transport of dissolved hydrocarbons influenced by oxygen-limited bioremediation. 1. Theoretical development. Water Resources Research. Vol. 22. Iss. 13 p. 1973–1990.
  • BUTLER C., ADAMOWSKI J. 2015. Empowering marginalized communities in water resources management: Addressing inequitable practices in Participatory Model Building. Journal of Environmental Management. Vol. 153 p. 153–162.
  • CAMPISI S., ADAMOWSKI J., ORON G. 2012. Forecasting urban water demand via wavelet- denoising and neural network models. Case study: City of Syracuse, Italy. Water Resources Management. Vol. 26 p. 3539–3558.
  • DANESHMAND F., KARIMI A., NIKOO M., BAZARGAN-LARI M., ADAMOWSKI J. 2014. Mitigating socio-economic-environmental impacts during drought periods by optimizing the conjunctive management of water resources. Water Resources Management. Vol. 28. Iss. 6 p. 1517–1529.
  • DEB K. 2001. Multi-objective optimization using evolutionary algorithms. John Wiley and Sons Ltd., England. ISBN 978-0-471-87339-6 pp. 515.
  • DEB K., PRATAP A, AGRAWAL S., MEYARIVAN T. 2002. A fast and elitist multi-objective genetic algorithm: NSGA-II. Technical Report, Indian Institute of Technology, Kanpur: Kanpur Genetic Algorithm Laboratory. Vol. 6. Iss. 2 p. 182–197.
  • ELRAGAL H.M., MANGOUD M.A., ALSHARAA M.T. 2011. Hybrid differential evolution and enhanced particle swarm optimisation technique for design of reconfigurable phased antenna arrays. IET Microwave Antennas Propagation. Vol. 5. Iss. 11 p. 1280–1287.
  • GUAN J., ARAL M.M. 1999. Optimal remediation with well locations and pumping rates selected as continuous decision variables. Journal of Hydrology. Vol. 221. Iss. 1–2 p. 20–42.
  • HAIDARY A., AMIRI B.J., ADAMOWSKI J., FOHRER N., NAKANE K. 2013. Assessing the impacts of four land use types on the water quality of wetlands in Japan. Water Resources Management. Vol. 27 p. 2217–2229.
  • HALBE J., PAHL-WOSTL C, SENDZIMIR J, ADAMOWSKI J. 2013. Towards adaptive and integrated management paradigms to meet the challenges of water governance. Water Science and Technology: Water Supply. Vol. 67 p. 2651–2660.
  • HU Z., CHAN C.W., HUANG G.H. 2004. Dynamic process control for in-situ bioremediation system. Electrical and Computer Engineering. Vol. 3 p. 1385–1388.
  • HU Z., CHAN C.W., HUANG G.H. 2007. Multi objective optimization for process control of the in-situ bioremediation system under uncertainty. Engineering Applications of Artificial Intelligence. Vol. 20. Iss. 2 p. 225–237.
  • HUANG C., MAYER A.S. 1997. Pump and treat optimization using well locations and pumping rate as decision variables. Water Resources Research. Vol. 33. Iss. 5 p. 1001–1012.
  • INAM A., ADAMOWSKI J., HALBE J., PRASHER S. 2015. Using causal loop diagrams for the initialization of stakeholder engagement in soil salinity management in agricultural watersheds in developing countries: A case study in the Rechna Doab watershed, Pakistan. Journal of Environmental Management. Vol. 152 p. 251–267.
  • KOLINJIVADI V., ADAMOWSKI J., KOSOY N. 2014a. Juggling multiple dimensions in a complex socioecosystem: The issue of targeting in payments for ecosystem services. GeoForum. Vol. 58 p. 1–13.
  • KOLINJIVADI V., ADAMOWSKI J., KOSOY N. 2014b. Recasting payments for ecosystem services (PES) in water resource management: A novel institutional approach. Ecosystem Services. Vol. 10 p. 144–154.
  • KOTINIS M. 2010. A particle swarm optimizer for constrained multi-objective engineering design problems. Engineering Optimization. Vol. 42. Iss. 10 p. 907–926.
  • MAHMOOD S., ADAMOWSKI J., ALAZBA A., EL-GINDY A. 2015. Rainwater harvesting for the management of agricultural droughts in arid and semi-arid regions. Paddy and Water Environment. In press.
  • MAYER B. 2008. Hybrids of constructive metaheuristic and constraint programming; A case study with ACO. In: Hybrid Metaheuristics: An Emerging Approach to Optimization. Berlin Heidelberg. Studies in Computational Intelligence. Vol. 114 p. 151–183.
  • MEDEMA W., LIGHT S., ADAMOWSKI J. 2014a. Integrating adaptive learning into water resources management. Journal of Environmental Engineering and Management. Vol. 13 p. 1801–1816.
  • MEDEMA W., WALS A., ADAMOWSKI J. 2014b. Virtual learning platforms for sustainable land and water governance: An innovative mechanism for facilitating multiloop social learning. Wageningen University Journal of Life Sciences. Vol. 69 p. 23-38.
  • MINSKER B.S., SHOEMAKER C.A. 1998. Dynamic optimal control of in-situ bioremediation of groundwater. Journal of Water Resources Planning and Management. Vol. 124. Iss. 3 p. 149–161.
  • MONTESINOS P., GARCIA-GUZMAN A., AYUSO J.L. 1999. Water distribution network optimization using modified genetic algorithm. Water Resources Research. Vol. 35. Iss. 11 p. 3467–3473.
  • NALLEY D., ADAMOWSKI J., KHALIL B. 2012. Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). Journal of Hydrology. Vol. 475 p. 204–228.
  • NALLEY D., ADAMOWSKI J., KHALIL B., OZGA-ZIELINSKI B. 2013. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Journal of Atmospheric Research. Vol. 132/133 p. 375–398.
  • NAMDAR M., ADAMOWSKI J., SAADAT H., SHARIFI F., KHIRI A. 2014. A new approach to developing LULC maps for semi-arid regions using independent component analysis and expert classification. International Journal of Remote Sensing. Vol. 35 p. 8057–8073.
  • OLDENHUIS R.P.S. 2010. Trajectory optimization of a mission to the solar bow shock and minor planets [online]. M.Sc. thesis, Dept. of Astrodynamics and Space Missions, Delft University of Technology. [Access 06.08.2015]. Available at: http://repository.tudelft.nl/view/ir/uuid:6672aa53-6ecc-4571-85b2-2d4aafbba5bd/
  • PANIGRAHI B.K., RAVIKUMAR PANDI V., DAS S., DAS S. 2010. Multiobjective fuzzy dominance based bacterial foraging algorithm to solve economic emission dispatch problem. Energy. Vol. 35. Iss. 12 p. 4761–4770.
  • PINGALE S., KHARE D., JAT M., ADAMOWSKI J. 2014. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centres of the arid and semi-arid state of Rajasthan, India. Journal of Atmospheric Research. Vol. 138 p. 73–90.
  • PRASAD R.K., MATHUR S. 2008. Potential well locations in in-situ bioremediation design using Neural Network Embedded Monte Carlo Approach. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. Vol. 12. Iss. 4 p. 260–269.
  • PRESTWICH S. 2002. Combining the scalability of local search with the pruning techniques of systematic search. Annals of Operations Research. Vol. 115. Iss. 1–4 p. 51–72.
  • RAVIKUMAR PANDI V., PANIGRAHI B.K. 2006. An evolutionary algorithm approach to estimate the parameters of power quality signals. International Conference on Power Electronics, Drives and Energy Systems. New Dehli, India, 12–15 Dec. 2006. IEE p. 1–6.
  • ROTHBERG E. 2007. An evolutionary algorithm for polishing mixed integer programming solutions. INFORMS Journal on Computing. Vol. 19. Iss. 4 p. 534–541.
  • SAADAT H., ADAMOWSKI J., BONNELL R., SHARIFI F., NAMDAR M., ALE-EBRAHIM S. 2011. Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. Journal of Photogrammetry and Remote Sensing. Vol. 66 p. 608–619.
  • SAADAT H., ADAMOWSKI J., TAYEFI V., NAMDAR M., SHARIFI F., ALE-EBRAHIM S. 2014. A new approach for regional scale interrill and rill erosion intensity mapping using brightness index assessments from medium resolution satellite images. Catena. Vol. 113 p. 306–313.
  • SCHOOT J.R. 1995. Fault tolerant design using single and multi-criteria genetic algorithm [online]. M.Sc Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology. [Access 06.08.2015]. Available at: http://hdl.handle.net/1721.1/11582
  • SHIEH H.J., PERALTA R.C 2005. Optimal in-situ bioremediation design by hybrid genetic algorithm-simulated annealing. Journal of Water Resources Planning and Management. Vol. 131. Iss. 1 p. 67–78.
  • STRAITH D., ADAMOWSKI J., REILLY K. 2014. Exploring the attributes, strategies and contextual knowledge of champions of change in the Canadian water sector. Canadian Water Resources Journal. Vol. 39. Iss. 3 p. 255–269.
  • TIWARI M., ADAMOWSKI J. 2013. Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resources Research. Vol. 49. Iss. 10 p. 6486–6507.
  • TSE S.M., LIANG Y., LEUNG K.S., LEE K.-H., MOK T.S.K. 2007. A memetic algorithm for multiple-drug cancer chemotherapy schedule optimization. IEEE Transactions on Systems, Man, and Cybernetics. Part B. Vol. 37. Iss. 1 p. 84–91.
  • VINKO T., IZZO D., BOMBARDELLI C. 2007. Benchmarking different global optimisation techniques for preliminary space trajectory design. 58th Int. Astronautical Congress, Hyderabad. IAF p. 24–28.
  • WANG M., ZHENG C. 1997. Optimal remedial policy selection under general conditions. Ground Water. Vol. 35. Iss. 5 p. 757–764.
  • ZHANG S., GONG S.X., GUAN Y., ZHANG P.F., GONG Q. 2009. A novel IGA-EDSPSO hybrid algorithm for the synthesis of sparse arrays. Progress in Electromagnetics Research. Vol. 89 p. 121–134.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60711de1-070d-4031-91b8-89329cafcad1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.