PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ionospheric Time-delay over Akure Using Global Positioning System Observations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ionospheric time delay (VΔt) variability using Global Positioning System (GPS) data over Akure (7.15°N, 5.12°E), Nigeria, has been studied. The observed variability of VΔt in comparison to older results of vertical total electron content (TEC) across similar regions has shown equivalent signatures. Higher monthly mean values of VΔt (MVΔt) were observed during daytime as compared to nighttime (pre- and post- midnight) hours in all months. The highest MVΔt observed in September during daytime hours range between ~6 and ~21 ns (~1.80 and ~6.30 m) and at post-midnight, they are in the range of ~1 to ~6 ns (~0.3 to ~1.80 m). The possible mechanisms responsible for this variability were discussed. Seasonal VΔt were investigated as well.
Czasopismo
Rocznik
Strony
884--899
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • Department of Physics, University of Lagos, Akoka, Nigeria
autor
  • African Regional Centre for Space Science Technology Education (English), Obafemi Awolowo University, Ile Ife, Nigeria
  • National Space Research and Development Agency (NASRDA), Abuja, Nigeria
  • African Regional Centre for Space Science Technology Education (English), Obafemi Awolowo University, Ile Ife, Nigeria
  • National Space Research and Development Agency (NASRDA), Abuja, Nigeria
autor
  • Department of Mechanical Engineering, Obafemi Awolowo University, Ile Ife, Nigeria
autor
  • Department of Physics, Adekunle Ajasin University, Akungba-Akoko, Nigeria
  • Space Physics Laboratory, Department of Physics, Federal University of Technology, Akure, Nigeria
autor
  • National Space Research and Development Agency (NASRDA), Abuja, Nigeria
  • Space Physics Laboratory, Department of Physics, Federal University of Technology, Akure, Nigeria
Bibliografia
  • [1] Bailey, G.J., Y.Z. Su, and K.I. Oyama (2000), Yearly variations in the low-latitude topside ionosphere, Ann. Geophys. 18, 7, 789-798, DOI: 10.1007/s00585-000-0789-0.
  • [2] Battacharya, S., P.K. Purohit, and A.K. Gwal (2009), Ionospheric time delay variations in the equatorial anomaly region during low solar activity using GPS, Indian J. Radio Space Phys. 38, 5, 266-274.
  • [3] Bhuyan, P.K., and R.R. Borah (2007), TEC derived from GPS network in India and comparison with the IRI, Adv. Space Res. 39, 5, 830-840, DOI: 10.1016/ j.asr.2006.12.042.
  • [4] Bolaji, O.S. (2012), Variability of total electron content and magnetic field intensity at Ilorin, Ph.D. Thesis, University of Ilorin, Nigeria.
  • [5] Bolaji, O.S., J.O. Adeniyi, S.M. Radicella, and P.H. Doherty (2012), Variability of total electron content over an equatorial West African station during low solar activity, Radio Sci. 47, 1, RS1001, DOI: 10.1029/2011RS004812.
  • [6] Bolaji, O.S., J.O. Adeniyi, I.A. Adimula, S.M. Radicella, and P.H. Doherty (2013), Total electron content and magnetic field intensity over Ilorin, Nigeria, J. Atmos. Sol.-Terr. Phys. 98, 1-11, DOI: 10.1016/j.jastp.2013.02.011.
  • [7] Chen, F.F. (1984), Introduction to Plasma Physics and Controlled Fusion. Volume 1: Plasma Physics, 2nd ed., Plenum Press, New York, 421 pp.
  • [8] Dabas, R.S., L. Singh, D.R. Lakshmi, P. Subramanyam, P. Chopra, and S.C. Garg (2003), Evolution and dynamics of equatorial plasma bubbles: Relationships to ExB drift, postsunset total electron content enhancements, and equatorial electrojet strength, Radio Sci. 38, 4, 1075, DOI: 10.1029/ 2001RS002586.
  • [9] Danilov, A.D., and J. Lastovicka (2001), Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeronom. 2, 3, 209-224.
  • [10] Davies, K. (1990), Ionospheric Radio, IEE electromagnetic waves series, Vol. 31, Peter Peregrinus Ltd., London, 580 pp.
  • [11] Eleman, F. (1973), The geomagnetic field. In: A. Egeland,, Ø. Holter, and A. Omholt (eds.), Cosmical Geophysics, Chp. 3, Scandinavian University Books, Oslo, 45-62.
  • [12] Ginzburg, V.L. (1970), The Propagation of Electromagnetic Waves in Plasmas, 2nd ed., Pergamon Press, Oxford.
  • [13] Hall, M.P.M., L.W. Barclay, and M.T. Hewitt (eds.) (1996), Propagation of Radiowaves, IEE Press, London, 446 pp.
  • [14] Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (2012), Global Positioning System: Theory and Practice, 5th rev. ed., Springer Verlag, Wien, 382 pp., DOI: 10.1007/978-3-7091-6199-9.
  • [15] ISR (2009), Global Positioning System total electron content analysis application user’s manual, Institute for Scientific Research, Boston College, Chestnut Hill, USA.
  • [16] Janve, A.V., R.K. Rai, M.R. Deshpande, R.G. Rastogi, A.R. Jain, M. Singh, and H.S. Gurm (1979), On the nighttime enhancements in ionospheric total content at low latitudes, Ann. Geophys. 35, 159-165.
  • [17] Koster, J.R. (1972), Equatorial scintillation, Planet. Space Sci. 20, 12, 1999-2014, DOI: 10.1016/0032-0633(72)90056-6.
  • [18] Langley, R., M. Fedrizzi, E. Paula, M. Santos, and A. Komjathy (2002), Mapping the low latitude ionosphere with GPS, GPS World 13, 2, 41-46.
  • [19] Lee, C.C., Y.J. Chuo, and F.D. Chu (2010), Climatology of total electron content near the dip equator under geomagnetic quiet-conditions, J. Atmos. Sol.- Terr. Phys. 72, 2-3, 207-212, DOI: 10.1016/j.jastp.2009.11.011.
  • [20] Liu, C., M.L. Zhang, W. Wan, L. Liu, and B. Ning (2008), Modeling M(3000)F2 based on empirical orthogonal function analysis method, Radio Sci. 43, 1, RS1003, DOI: 10.1029/2007RS003694.
  • [21] Mannucci, A.J., B.D. Wilson, and C.D. Edwards (1993), A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. In: Proc. 6th Int. Tech. Meet. Satellite Division of the Institute of Navigation, 22-24 September 1993, Salt Lake City, USA, ION GPS-93, 1323-1332.
  • [22] McNamara, L.F. (1991), The Ionosphere: Communications, Surveillance, and Direction Finding, Orbit - a foundation series, Krieger Publ. Co., Malibar.
  • [23] Odijk, D. (2002), Fast Precise GPS Positioning in the Presence of Ionospheric Delay, Publications on geodesy, Vol. 52, Netherlands Geodetic Commission, Delft, 242 pp.
  • [24] Olatunji, E.O. (1967), The total columnar electron content of the equatorial ionosphere, J. Atmos. Terr. Phys. 29, 3, 277-285, DOI: 10.1016/0021-9169(67) 90197-3.
  • [25] Rama Rao, P.V.S., S. Gopi Krishna, K. Niranjan, and D. Prasad (2006), Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during low solar activity period of 2004-2005, Ann. Geophys. 24, 12, 3279-3292, DOI: 10.5194/angeo-24-3279-2006.
  • [26] Ratcliffe, J.A. (1975), The early ionosphere investigations of Appleton and his colleagues, Phil. Trans. Roy. Soc. London A 280, 1293, 3-9, DOI: 10.1098/ rsta.1975.0088.
  • [27] Rishbeth, H., and C.S.G.K. Setty (1961), The F-layer at sunrise, J. Atmos. Terr. Phys. 20, 4, 263-276, DOI: 10.1016/0021-9169(61)90205-7.
  • [28] SIDC (2013), Solar Influences Data Analysis Center, archive at http://sidc.oma.be/sunspot-data (assesses 14 July 2013).
  • [29] Skinner, N.J. (1966), Measurements of total electron content near the magnetic equator, Planet. Space Sci. 14, 11, 1123-1129, DOI: 10.1016/0032-0633 (66)90026-2.
  • [30] Tyagi, T.R., K.C. Yeh, A. Tauriainen, and H. Soicher (1982), The electron content and its variations at Natal, Brazil, J. Geophys. Res. 87, A4, 2525-2532, DOI: 10.1029/JA087iA04p02525.
  • [31] Wu, C.C., C.D. Fry, J.Y. Liu, K. Liou, and C.L. Tseng (2004), Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996 - August 1997, J. Atmos. Sol.-Terr. Phys. 66, 3-4, 199-207, DOI: 10.1016/j.jastp.2003.09.017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60703cf8-26e7-4ca2-9fa8-b603ecfe1c20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.