PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Subtle structure of streamers under conditions resembling those of Transient Luminous Events

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a brief review of the observational facts related to plasma filamentation in astrophysics and the subtle structures of plasma in Transient Luminous Events (TLE’s) and an analysis of the physical mechanism that could contribute to formation of filaments in plasma inside streamers. The values of physical parameters are assumed such as to resemble the physical conditions in streamers of the TLE’s. Estimates of the typical spatial scales of these structures and temporal characteristics of filament formation are given. The analysis concerns a non-magnetic mechanism based on a form of non-relativistic dissipative instability and the electron-nitrogen collisional 2Πg resonance. It is argued that the influence of the magnetic field is negligible at the leading order at least up to the altitudes of about 65–70 km. Under the conditions related to those in plasma inside the TLE’s, derived based on the current knowledge of physical parameters within the electric discharges, the identified dissipative-resonant instability is demonstrated to be the only/most vigorous linear instability developing in the system. It results in periodic plasma density distribution in the direction transverse to the electric field. The obtained time scales of the instability development are quick and proportional to the inverse of the ion-neutral collision frequency, 1/νi, whereas the proposed spatial scale of the density stripes/filaments is proportional to the electron temperature and inversely proportional to the speed of the discharge.
Rocznik
Strony
535--550
Opis fizyczny
Bibliogr. 40 poz., rys. kolor.
Twórcy
  • Plasma Physics Department Space Research Centre Polish Academy of Sciences Bartycka 18A 00-716 Warszawa, Poland
  • Department of Magnetism Institute of Geophysics Polish Academy of Sciences Księcia Janusza 64 01-452, Warszawa, Poland
Bibliografia
  • 1. A.L. Peratt, Physics of the Plasma Universe, Appendix C. Dusty and Grain Plasmas, Springer, New York, 1992.
  • 2. H. Alfvén, On the Filamentary Structure of the Solar Corona. The Solar Corona, Proceedings of IAU Symposium no. 16, International Astronomical Union, Academic Press, New York, p. 35, 1963.
  • 3. N.Y. Kotsarenko, O. Verkhoglyadova, K.I. Churyumov, Three-dimensional model of ray structure formation in cometary plasma tails, Planetary and Space Science, 42, 9, 733–736, 1994, doi: 10.1016/0032-0633(94)90114-7.
  • 4. J. Blecki, S. Savin, N. Cornilleau-Wehrlin, K. Kossacki, M. Parott, H. Rothkaehl, K. Stasiewicz, R. Wronowski, O. Santolik, J.-A. Sauvaud, Fine structure of the polar cusp as deduced from the plasma wave and plasma measurements, Advances in Space Research, 32, 3, 315–321, 2003, doi:10.1016/S0273-1177(03) 90269-9.
  • 5. J. Blecki, R. Wronowski, S. Savin, N. Cornilleau-Wehrlin, M. Parott, J. Safrankova, Z. Nemecek, O. Santolik, J.-A. Sauvaud, Filamentation of the space plasmas, Proceedings of WDS Conference, pp. 371–380, Prague, 2003.
  • 6. J. Blecki, S. Savin, N. Cornilleau-Wehrlin, H. Rothkaehl, M. Parott, K. Stasiewicz, R. Wronowski, O. Santolik, J.-A. Sauvaud, Z. Nemecek, J. Safrankova, Filamentary structure of the magnetospheric plasma, Proceedings of Galperin Conference “Auroral Phenomena and Solar terrestrial Relations”, Moscow, Russia,CAWSES Handbook-1, Boulder, 2004, pp. 350–354.
  • 7. C.T.R. Wilson, The electric field of a thundercloud and some of its effects, Proceedings of the Physical Society of London, 37, 1, 32D, 1924, doi: 10.1088/1478-7814/37/1/314.
  • 8. O.H. Vaughan, B. Vonnegut, Recent observations of lightning discharges from the top of a thundercloud into the clear air above, Journal of Geophysical Research, 94, 13179–13182, 1989.
  • 9. R.C. Franz, R.J. Nemzek, J.R. Winckler, Television image of a large upward electrical discharge above a thunderstorm system, Science, 249, 1990, doi: 10.1126/science.249.4964.48.
  • 10. M. Stanley, M. Brook, S. Cummer, C. Barrington-Leigh, E. Gerken, Broadband detection and characterization of day-time sprites and of negative CGs which initiated sprites, Eos Transactions American Geophysical Union, 79, Fall Meeting Supplement, F177, 1998.
  • 11. M. Stanley, M. Brooks, P. Krehbiel, S.A. Cummer, Detection of day-time sprites via a unique sprite ELF signature, Geophysical Research Letters, 27, 871–874, 2000, doi: 10.1029/1999GL010769.
  • 12. M.G. McHarg, R.K. Haaland, D. Moudry, H.C. Stenbaek-Nielsen, Altitude time development of sprites, Journal Geophysical Research, 107, A11, 1364, 2002, doi: 10.1029/2001JA000283.
  • 13. C.L. Kuo, A.B. Chen, J.K. Chou, L.Y. Tsai, R.R. Hsu, H.T. Su, H.U. Frey, S.B. Mende, Y. Takahashi, L.C. Lee, Radiative emission and energy deposition in transient luminous events, Journal of Physics D: Applied Physics, 41, 234014-234028, 2008, doi: 10.1088/0022-3727/41/23/234014.
  • 14. V.V. Surkov, M. Hayakawa, Underlying mechanisms of transient luminous events: a review, Annals of Geophysics, 30, 1185–1212, 2012, doi: 10.5194/angeo-30-1185-2012.
  • 15. M. Sato, Y. Takahashi, S. Watanabe, T.P. Ushio, T. Morimoto, Z.-I. Kawasaki, M. Suzuki, T. Takashima, H. Ohya, H. Nakata, K. Odo, Y. Hiraki, T. Adachi, Y. Hobara, JEM-GLIMS mission, coupling of thunderstorms and lightning discharges to near-earth space, TLE Workshop, Corte, France, 2008, doi: 10.1063/1.3137707.
  • 16. E.A. Gerken, U.S. Inan, C.P. Barrington-Leigh, Telescopic imaging of sprites, Geophysical Research Letterts, 27, 17, 2637–2640, 2000, doi: 10.1029/2000GL000035.
  • 17. M.G. McHarg, H.C. Stenbaek-Nielsen, T. Kammae, Observations of streamer formation in sprites, Geophysical Research Letterts, 34, L06804, 2007, doi: 10.1029/2006 GL027854.
  • 18. H.C. Stenbaek-Nielsen, T. Kanmae, M.G. McHarg, R. Haaland, High-speed observations of sprite streamers, Surveys in Geophysics, 34, 6, 769–795, 2013, doi: 10.1007/s10712-013-9224-4.
  • 19. E.A. Gerken, U.S. Inan, Observations of decameter-scale morphologies in sprites, Journal of Atmosospheric and Solar-Terrestrial Physics, 65, 567–572, 2003, doi: 10.1016/S1364-6826(02)00333-4.
  • 20. R.A. Marshall, U.S. Inan, High-speed measurements of small-scale features in sprites: sizes and lifetimes, Radio Science, 41, RS6S43, 2006, doi: 10.1029/2005RS003353.
  • 21. V.P. Pasko, U.S. Inan, T.F. Bell, Spatial structure of sprites, Geophysical Research Letterts, 25, 12, 2123–2126, 1998, doi: 10.1029/98GL01242.
  • 22. U. Ebert, S. Nijdam, Ch. Li, A. Luque, T. Briels, E. van Veldhuizen, Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning, Journal of Geophysical Research, 115, A00E43, 2010, doi: 10.1029/2009JA014867.
  • 23. V.P. Pasko, Recent advances in theory of transient luminous events, Journal of Geophysical Research, 115, A00E35, 2010, doi: 10.1029/2009JA014860.
  • 24. M.G. McHarg, H.C. Stenbaek-Nielsen, T. Kammae, R.K. Haaland, Streamer tip splitting in sprites, Journal of Geophysical Research, 115, A00E53, 2010, doi: 10.1029/2009JA014850.
  • 25. V.P. Pasko, Y. Yair, Ch.-L. Kuo, Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects, Space Science Reviews, 168, 475–516, 2012, doi: 10.1007/s11214-011-9813-9.
  • 26. R. Morrow, J.J. Lowke, Streamer propagation in air, Journal of Physics D: Applied Physics, 30, 614–627, 1997, http://iopscience.iop.org/0022-3727/30/4/017.
  • 27. T. Neubert, On sprites and their exotic kin, Science, 300, 5620, 747–749, 2003, doi: 10.1126/science.1083006.
  • 28. Y. Hiraki, Y. Kasai, H. Fukunishi, Chemistry of sprite discharges through ion-neutral reactions, Atmospheric Chemistry and Physics, 8, 3919–3928, 2008, doi: 10.5194/acp-8-3919-2008.
  • 29. D.D. Sentman, H.C. Stenbaek-Nielsen, M.G. McHarg, J.S. Morrill, Plasma chemistry of sprite streamers, Journal of Geophysical Research, 113, D11112, 2008, doi:10.1029/2007JD008941.
  • 30. D.K. Sharma, J. Rai, M. Israil, P. Subrahmanyam, P. Chopra, S.C. Garg, Enhancement in ionospheric temperatures during thunderstorms, Journal of Atmosospheric and Solar-Terrestrial Physics, 66, 51–56, 2004, doi:10.1016/j.jastp.2003.07.013.
  • 31. T. Kovács, J.M.C. Plane, W. Feng, T. Nagy, M.P. Chipperfield, P.T. Verronen, M.E. Andersson, D.A. Newnham, M.A. Clilverd, D.R. Marsh, D-region ion neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) – WACCM-SIC and WACCM-rSIC, Geoscientific Model Development, 9, 3123–3136, 2016, doi: 10.5194/gmd-9-3123-2016.
  • 32. N.V. Smirnova, A.D. Danilov, Rocket data on the D-region positive ion composition, Journal of Atmospheric and Terrestrial Physics, 56, 8, 887–892, 1994, doi: 10.1016/0021-9169(94)90150-3.
  • 33. Y. Itikawa, Cross-sections for electron collisions with nitrogen molecules, Journal of Physical and Chemical Reference Data, 35, 1, 31–53, 2006, doi: 10.1063/1.1937426.
  • 34. R.E. Kennerly, Absolute total electron scattering cross sections for N2 between 0.5 and 50 eV, Physical Review A, 21, 1876–1883, 1980, doi: 10.1103/Phys-RevA.21.1876.
  • 35. W. Sun, M.A. Morrison, W.A. Isaacs, W.K. Trail, D.T. Alle, R.J. Gulley, M.J. Brennan, S.J. Buckman, Detailed theoretical and experimental analysis of low-energy electron-N2 scattering, Physical Review A, 52, 1229–1256, 1995, doi: https://doi.org/10.1103/PhysRevA.52.1229.
  • 36. M.J. Brunger, P.J.O. Teubner, A.M. Weigold, S.J. Buckman, Vibrational excitation of N2 in the 2g resonance region, Journal of Physics B: Atomic, Molecular and Optical Physics, 22, 1443–1453, 1989.
  • 37. A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of Plasma Electrodynamics, Springer, Berlin, Heidelberg, 1984.
  • 38. B. Shokri, S.M. Khorashadi, M. Dastmalchi, Ion-acoustic filamentation of a current-driven plasma, Physics of Plasmas, 9, 8, 3355–3358, 2002, doi: http://dx.doi.org/10.1063/1.1490133.
  • 39. G. Schmidtke, K. Suchy, K. Rawer, Encyclopedia of Physics, Vol. XLIX/7, Geophysics III/7, Springer, Berlin, Heidelberg, 1984.
  • 40. K. Słomińska, J. Błęcki, J. Słomiński and the JEM-EUSO Collaboration, Science of atmospheric phenomena with JEM-EUSO, Experimental Astronomy, 40, 239–251, 2015, doi: 10.1007/s10686-014-9431-0.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6062f2ab-643f-4603-8a62-a621096527c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.