

This work has been compiled from the paper presented during the 21th International Workshop on CAD, CAM and CAE

Systems, Jurata, Poland, May 8-12, 2017.

Acceleration of Signal Processing Algorithms

in Seekers Using Graphics Processing Units

Piotr TUREK

Military University of Technology, Faculty of Mechatronics and Aerospace,

2 gen. Witolda Urbanowicza Str., 00-908 Warsaw, Poland

Corresponding author’s e-mail address and ORCID:

piotr.turek@wat.edu.pl; https://orcid.org/0000-0002-2869-3182

Received by the editorial staff on 10 April 2017

The reviewed and verified version was received on 14 February 2019

DOI 10.5604/01.3001.0013.0799

Abstract. The paper presents a discussion on the issue of possible acceleration

of radiolocation signal processing algorithms in seekers using graphics processing units.

A concept and implementation examples of algorithms performing digital data filtering

on general purpose central and graphics processing units are introduced. The results of

performance comparison of central and graphics processing units during computing

discrete convolution are presented at the end of the paper.

Keywords: graphics processing units, signal processing, Compute Unified Device

Architecture

1. INTRODUCTION
The purpose of this paper is to present the possibilities of using

accelerating signal processing algorithms using GPUs (Graphics Processing

PROBLEMS OF MECHATRONICS
ARMAMENT, AVIATION, SAFETY ENGINEERING

PROBLEMY MECHATRONIKI
UZBROJENIE, LOTNICTWO, INŻYNIERIA BEZPIECZEŃSTWA

ISSN 2081-5891 10, 1 (35), 2019, 91-98

P. Turek 92

Unit) and a comparison of times to complete digital signal filtration programs

performed on GPUs when compared to their equivalents implemented on CPUs

(Central Processing Unit).

Digital processing of radiolocation signals involves the transmission of

large data streams, which even for signals of intermediate frequencies may

amount to several hundred megabytes per second. There are two methods of

processing such signals: hardware method, implemented on dedicated

structures, e.g. FPGA (Field Programmable Gate Array), and software method

implemented on DSPs (Digital Signal Processor), using general purpose CPUs

and GPUs.

Digital radiolocation signal processing algorithms are well suited

for implementation in parallel architectures, as their essence is repeated

performance of identical multiplication and accumulation operations. One of

the latest trends in parallel data processing is the use of graphics processors with

an architecture suitable for this task. In recent years, graphics processors have

evolved in a direction enabling complete software control over the computations

they perform, which enabled using them for other purposes than generating

graphics, and resulted in the emergence of so-called GPGPUs (general purpose

graphics processing units). A major step was the development by graphics

processor market leaders of libraries dedicated for parallel computation, such

as OpenGL and CUDA (Compute Unified Device Architecture). These libraries

contain implementations of mathematical tools that support the commonly used

high-level programming languages (C, C++, Python) and can successfully be

applied to signals processing. GPU manufacturers declare that parallel

execution of operations can accelerate signal processing algorithms

several-fold.

Fig. 1. Differences in CPU and GPU architecture

Acceleration of Signal Processing Aalgorithms in Seekers Using Graphics… 93

It must be noted that GPU architecture and capabilities are

not equally suited for all tasks. GPUs are dedicated for parallel execution of

the same operation on multiple data samples at the same time.

In contrast, CPUs are better suited for performing different operations

concurrently. The difference mainly stems from the different architecture of the

processors, as shown in Fig. 1. GPUs have much greater numbers of arithmetic

logic units (cores), although their clock rates are usually lower than in modern

CPUs.

2. IMPLEMENTATION OF FILTERING ALGORITHMS ON

 CPUS AND GPUS

In radiolocation, the signal received is very frequently subject to

interference whose power is greater than the emitted signal echo, which

necessitates the use of filtering in the reception track. The paper presents

a comparison of the time required by CPUs and GPUs to complete a digital

convolution, which is one of the basic operations performed in signal filtering.

The convolution function is described by an integer:

(1)

While a discrete convolution is described by a sum:

(2)

The discrete convolution algorithm was subsequently implemented on the

following processors: a quad-core Intel(R) Core™ i5-3230M CPU 2.6 GHz and

the NVIDIA GeForce GT 640M LE GPU with 384 cores. To compare the

operation completion times, original applications were developed using the C++

and CUDA C languages. 32-bit float samples were processed for discrete

signals of different lengths. A fragment of the function performing the discrete

convolution on the CPU is shown in Listing 1. It shows that the multiplication

and accumulation operations are performed sequentially for subsequent signal

samples. The function performance time depends in this case on the processor's

clock rate. Performing a discrete convolution on a graphics processor is a more

complex operation. The programmer has no direct access to the GPU memory,

and the data to be processed must be sent there by the CPU through the RAM.

Implementing algorithms on a graphics processor requires having a dedicated

compiler installed on the computer, which can differentiate between the code

written to be executed on the GPGPU device from the code intended for host

CPU.

P. Turek 94

Both in the OpenCL open standard and in a solution dedicated to devices

of a single company only – CUDA, the code syntax does not differ significantly

from the classic "C" language.

Functions executed on the GPU are termed "kernels", and their declaration

must be preceded and finished by a double "__" sign.

Calling a kernel performing a task on the GPU requires stating at least

the number of blocks and threads where the function is to be executed, as shown

in Listing 2.

Listing 1

float convolution_cpu(float *sig_in, float *filter,
int sig_length, int filter_length)
 {
 // . . .
 // Computation of convolution on CPU

 for (i=0; i< sig_length; i++)
 {

 for (j=0; j< filter_length; j++)
 {
 if(i-j >=0)
 sig_out[i]+= sign_in[j]*filter[i-j];
 }
 }
 }

Listing 2

Fig. 2 shows the logical structure of a graphics processor, which is made

up of elements contained in one another: grid, blocks and threads.

An additional important issue when writing programs for GPUs is the use

of shared and local (private in OpenCL) memory. These two memory types

enable much faster read and write operations than global memory. In the

application written for the GPU, shared memory was utilised, which is available

to all threads in a block. Parallel execution of operations carries the risk that

operations executed in individual threads may not be completed exactly at the

same time. For this reason, thread synchronisation is implemented, which

prevents initiating subsequent phases of the program before threads in the entire

block complete their operations.

Function_name<<< number_of_blocks , number_of_threads>>>.

Acceleration of Signal Processing Aalgorithms in Seekers Using Graphics… 95

Fig. 2. Organisation of logical structures and processing units in a GPU

Listing 3 shows fragments of code that executes the discrete convolution

function on the GPU.

Listing 3

__global__ convolution_gpu(*sig_in, *filter, *sig_out)
{
 // . . .
 // variable “index” allowing for reference to thread

// elements
 index = blockDim.x*blockId.x + threadId.x;

 __shared__ float sig_shared[width];
 // ...
 sig_shared[threadIdx.x]=sig_in[index_in_x];
 __syncthreads();

 // Computation of convolution on GPU

 if(threadIdx.x<O_Tile_Width)
 {
 sum=0.0f;
 for(int j=0;j<width;j++)
 {
 sum+=M[j]*sig_shared[j+threadIdx.x];
 }
 sig_out[index]=sum;
}

P. Turek 96

A noticeable difference in comparison with the code written for the CPU is

the occurrence of only one for loop. Incrementing subsequent samples is not

required as they have been distributed to further threads in blocks in the GPU

cores. This is enabled by the index variable used in the code, which accesses the

indexes of logical blocks and threads in the GPU’s grid.

Each time a function with arguments related to the dataset is called, it

requires previous allocation of memory at the GPU. These data are copied from

the CPU through the RAM. When the program is completed, the allocated

memory should be freed.

3. RESULTS OBTAINED

The tests of digital convolution execution on CPUs and GPUs involved

measuring the time to perform the convolution operation. A constant number

of 400 samples of impulse response of a filter matching a signal coded with

a Barker code was used in the test.

Fig. 3. Matched filtering using a Barker code

Acceleration of Signal Processing Aalgorithms in Seekers Using Graphics… 97

Additive noise was added to the signal to reduce the signal-to-noise ratio,

which enabled illustrating the capabilities of matched filters in the detection

process. The number of convoluted radiolocation signal samples was increased

for subsequent measurements.

Figure 3 shows sample results of convoluting 400 samples of noise-

burdened radiolocation signal (part A), whose phase was coded with a Barker

code (part B) with a reference signal, shown in part C. The resulting signal is

shown in part D. As a result of the operation, it is possible to unambiguously

determine the period of repetition of the reference signal in the noised signal.

The results of convolution completion time measurements on the GPU and

CPU for different numbers of radiolocation signal samples are shown in Fig. 4.

Fig. 4. Discrete convolution operation completion time for a CPU and GPU at different

radiolocation signal sample lengths

4. SUMMARY

The paper presented examples of implementing a radiolocation signal

filtering algorithm utilising the discrete convolution operation with a matched

filter. The results shown confirm that it is possible to accelerate radiolocation

signal processing by using GPGPUs instead of CPUs. The level of acceleration

depends on numerous factors, such as the ratio of the number of samples to the

number of threads in the GPU blocks, the GPU architecture, and the degree to

which local and shared memory is used. However, increased acceleration with

the number of convoluted samples is noticeable as well. Such a result confirms

the viability of using GPUs for processing digital radiolocation signals, where

the number of signal samples in a unit of time is very high. The results obtained

confirm a greater time-efficiency of the discrete convolution operation when

performed on a graphics processor, as compared to implementing this operation

on a CPU.

P. Turek 98

REFERENCES

[1] Jason Sanders, Edward Kandrot. 2011. CUDA w przykładach:

Wprowadzenie do ogólnego programowania GPU. NVIDIA Corporation.

[2] http://docs.nvidia.com/cuda/ - CUDA Toolkit Documentation v8.0.61

[accessed 28.03.2017] ,

[3] Guillon A.J. 2015. An Introduction to OpenCL C++, The Khronos Group

Inc.

Akceleracja algorytmów przetwarzania sygnałów

w głowicach samonaprowadzania

z wykorzystaniem procesorów graficznych

PIOTR TUREK

Wojskowa Akademia Techniczna, Wydział Mechatroniki i Lotnictwa

ul. gen. Witolda Urbanowicza 2, 00-908 Warszawa 46

Streszczenie. W artykule zamieszczono rozważania na temat możliwości akceleracji

algorytmów przetwarzania sygnałów radiolokacyjnych w głowicach

samonaprowadzania z wykorzystaniem procesorów graficznych. Przedstawiono

koncepcję oraz przykłady implementacji algorytmów realizujących cyfrową filtrację

na procesorach klasycznych oraz graficznych ogólnego przeznaczenia. Wyniki

porównania wydajności centralnych i graficznych jednostek przetwarzania podczas

obliczania dyskretnego splotu przedstawiono na końcu artykułu.

Słowa kluczowe: procesory graficzne, przetwarzanie sygnałów, Compute Unified

Device Architecture

