PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis of the conrod-free engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper considers the problems related with the thermodynamic analysis of the conrod-free engine. A mathematical model of the intake system of the conrod-free engine is proposed, which takes into account the kinematics of the slider-crank mechanism. The computational model of the intake system of the engine with the slidercrank mechanism is presented. The model allowed determining dependencies of the mixture temperature in the intake pipeline on the rotation frequency of crankshaft and on the angle of opening of the throttle gate. The total pressure losses in the engine intake system are determined taking into account the kinematics of the slider-crank mechanism. The mathematical model of the intake system of engine allows evaluating the measures aimed at optimizing the engine design and increasing its fuel efficiency.
Czasopismo
Rocznik
Strony
29--39
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevs’kogo St., Dnipro, 49600, Ukraine
autor
  • Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevs’kogo St., Dnipro, 49600, Ukraine
autor
  • Prydniprovs’ka State Academy of Civil Engineering and Architecture, 24A Chernyshevs’kogo St., Dnipro, 49600, Ukraine
autor
  • Military Academy, 10 Fontanska doroga, Odesa, 65009, Ukraine
Bibliografia
  • 1. Feng, D. & Wei, H. & Pan, M. Comparative study on combined effects of cooled EGR with intake boosting and variable compression ratios on combustion and emissions improvement in a SI engine. Applied Thermal Engineering. 2018. Vol. 131. P. 192-200. Available at: https://doi.org/10.1016/j.applthermaleng.2017.11.1
  • 2. Yuan, C. & Ren, H. & Xu, J. Comparison of the gas exchange of a loop scavenged free-piston engine alternator and the conventional engine. Applied Thermal Engineering. 2017. Vol. 127. P. 638-649. Available at: https://doi.org/10.1016/j.applthermaleng. 2017.08.059
  • 3. Breeze, P. Power Generation Technologies (Second Edition). Elsevier Ltd. 2014. 378 p.
  • 4. Variable compression ratio engines. Available at: http://www.motortrend.com/news/technologueprogram-vcr/
  • 5. Krishnamoorthi, M. & Malayalamurthi, R. Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel – aegle marmelos oil - diethyl ether blends. Energy. 2017. Vol. 128. P. 312-328. Available at: https://doi.org/10.1016/j.energy.2017.04.038
  • 6. Shuliak, M. Free-piston constructions – one of the most promising ways of improving power units of vehicles. Engineering of nature management. 2014. Vol. 1. No. 1. P. 17-23.
  • 7. Bennett, C. & Dunne, J.F. & Trimby, S. & et al. Engine cylinder pressure reconstruction using rank kinematics and recurrently-trained neural networks. Mechanical Systems and Signal Processing. 2017. Vol. 85. P. 126-145. Available at: https://doi.org/10.1016/j.ymssp.2016.07.015
  • 8. García-Canseco, E. & Alvarez-Aguirre, A. & Scherpen, M.A. Modeling for control of a kinematic wobble-yoke Stirling engine. Renewable Energy. 2015. Vol. 75. P. 808-817. Available at: https://doi.org/10.1016/j.renene.2014.10.038
  • 9. Лыонг, Хоанг Куанг & Дорохов, А.Ф. Кинематика и динамика бесшатунных механизмов преобразования движения. Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. 2015. No. 3. P. 79-87. [In Russian: Luong, Hoang Quang & Dorohov, A. Kinematics and Dynamics of Conrod-free Mechanisms of Motion Transformation. Vestnik Of Astrakhan State Technical University. Series: Marine Engineering & Technologies].
  • 10. Kazimierski, Z. & Wojewoda, J. Double internal combustion piston engine. Applied Energy. 2011. Vol. 88. No. 5. P. 1983-1985. Available at: http://www.sciencedirect.com/science/article/pii/S0306261910004447
  • 11. Яманин, А.И. & Яманин, И.А. Преобразующие механизмы двигателей с переменными степенью сжатия и рабочим объемом. Справочник. Инженерный журнал с приложением. Москва: Издательский дом "Спектр". 2007. Vol. 7. P. 1-25. [In Russian: Yamanin, A. & Yamanin, I. Conversion mechanisms of engines with varying degrees of compression and displacement. Directory. Engineering Journal with the application].
  • 12. Мусаев, М.А. & Аливагабов, М.М. Улучшение эксплуатационных качеств и показателей ДВС на основе новых конструктивных схем. Вестник АГТУ. Астрахань: ФГОУВПО «Астраханский Государственный Технический Университет». 2008. Vol. 5 (46). P. 128-131. [In Russian: Masuev, M.A. & Alivagabov, M.M. Improvement of performance characteristics and indices of internal-combustion engine based on new construction arrangements. Vestnik AGTU. Astrahan: FGOUVPO «Astrakhan State Technical University»].
  • 13. Irimescu, A. & Tornatore, C. & Marchitto, L. & et al. Compression ratio and blow-by rates estimation based on motored pressure trace analysis for an optical spark ignition engine. Applied Thermal Engineering. 2013. Vol. 61. No. 2. P. 101-109. Available at: https://doi.org/10.1016/j.applthermaleng.2013.07.036
  • 14. Dubey, P. & Gupta, R. Influences of dual bio-fuel (Jatropha biodiesel and turpentine oil) on single cylinder variable compression ratio dieselengine. Renewable Energy. 2018. Vol. 115. P. 1294-1302. Available at: https://doi.org/10.1016/j.renene.2017.09.055
  • 15. Hoeltgebaum, T. & Simoni, R. & Martins, D. Reconfigurability of engines: A kinematic approach to variable compression ratio engines. Mechanism and Machine Theory. 2016. Vol. 96. Part 2. [In Russian: Masuev, M.A. & Alivagabov, M.M. Improvement of performance characteristics and indices of internal-combustion engine based on new construction arrangements. Vestnik AGTU. Astrahan: FGOUVPO «Astrakhan State Technical University»].
  • 16. Nayyar, A. & Sharma, D. & Soni, S. L. & et al. Characterization of n-butanol diesel blends on a small size variable compression ratio diesel engine: Modeling and experimental investigation. Energy Conversion and Management. 2017. Vol. 150. P. 242-258. Available at: https://doi.org/10.1016/j.enconman.2017.08.031
  • 17. Курчаткин, И.В. & Горшкалев, А.А. & Цапкова, А.Б. Разработка и апробация методики моделирования рабочих процессов в двигатели внутреннего сгорания. Международный научно-исследовательский журнал. 2016. Vol. 6-48. No. 2. P. 81-84. [In Russian: Kurchatkin, I. & Gorshkalev, A. & Tsapkova, A. Development and testing technique of modeling of working processes in internal combustion engines. International Research Journal]. Available at: https://doi.org/10.18454/IRJ.2016.48.027
  • 18. Шароглазов, Б.А. & Фарафонтов, М.Ф. & Клементьев, В.В. Двигатели внутреннего сгорания: теория, моделирование и расчет процессов. Челябинск: ЮУРГУ. 2010. 382 p. [In Russian: Sharoglazov, B. & Farafontov, M. & Klementev, V. Internal combustion engines: theory, modeling and calculation of processes. Chelyabinsk: YuURGU].
  • 19. Hoube, M. & Bick, W. & Thied, R. & et al. Umsetzug innovativer Konzepte in die Serie. MTZ -Motortechnische Zeitschri. 2007. Vol. 68. No. P. 784-793. Available at: https://link.springer.com/article/10.1007/BF03227437
  • 20. Лукачев, С.В. & Бирюк, В.В. & Горшкалев, А.А. Использование Ansys Fluent для исследования газодинамических и тепловых процессов в малоразмерном двухтактном ДВС. Наука и Образование. 2014. No. 12. P. 416-425. [In Russian: Lukachev, S. & Biryuk, V. & Gorshkalev, A. Using Ansys Fluent to Study Gas-Dynamic and Thermal Processes in Small-Sized Two-Stroke Engine. Science and Education of the Bauman MSTU].
  • 21. Гришин, Ю.А. & Дорожинский, Р.К. & Зенкин, В.А. Расчетное улучшение характеристик впускной клапанной системы поршневого двигателя. Известия высших учебных заведений. 2012. No. 6. P. 52-58. [In Russian: Grishin, Y. & Dorozhinsky, R. & Zenkin, V. Calculation improvement of the piston engine valve system characteristics. Proceedings of Higher Educational Institutions].
  • 22. Yuan, C. & Xu, J. & He, Y. Performance characteristics analysis of a hydrogen fueled free-piston engine generator. International Journal of Hydrogen Energy. 2016. Vol. 41. No. 4. P. 3259-3271. Available at: https://doi.org/10.1016/j.ijhydene.2015.12.037
  • 23. Guo, C. & Feng, H. & Jia, B. & et al. Research on the operation characteristics of a free-piston linear generator: Numerical model and experimental results. Energy Conversion and Management. 2017. Vol. 131. P. 32-43. Available at: https://doi.org/10.1016/j.enconman.2016.11.010
  • 24. Smith, J.E. & Craven, R.P. & Cutlip, R.G. The Stiller-Smith Mechanism: A Kinematic Analysis. SAE Technical Paper 860535, 1986, 12 p. Available at: https://doi.org/10.4271/860535
  • 25. Whittley, E.R. Double-acting hypocucloidal engines. Small Intern Combust Engine, 1989. P. 97-103.
  • 26. Баландин, С.С. Бесшатунные двигатели внутреннего сгорания. Москва: Машиностроение. 1972. 176 p. [In Russian: Balandin, S. S. Conrod-free internal combustion engines. Moscow: Mechanical Engineering. 1972. 176 p.].
  • 27. Pfister, M. & Chanson, H. Two-phase air-water flows: Scale effects in physical modeling. Journal of Hydrodynamics, Ser. B. 2014. Vol. 26 (2). P. 291-298. Available at: https://doi.org/10.1016/S1001-6058(14)60032-9
  • 28. Giannakopoulos, G.K. & Frouzakis C.E. & Boulouchos, K. & et al. Direct numerical simulation of the flow in the intake pipe of an internal combustion engine. International Journal of Heat and Fluid Flow. 2017. Vol. 68. P. 257-268. Available at: https://doi.org/10.1016/j.ijheatfluidflow.2017.09.007
  • 29. Жилкин, Б.П. & Шестаков, Д.С. & Плотников, Л.В. Некоторые особенности газодинамики процесса впуска при наддуве поршневых ДВС. Тяжелое машиностроение. 2012. No. 2. P. 48-51. [In Russian: Zhilkin, B. & Shestakov, D. & Plotnikov, L. Some of characteristics of admission process of inlet process in supercharged internal combustion engines. Heavy Machinery].
  • 30. Моргунов, К.П. Гидравлика. Санк-Петербург: ООО «Издательство Лань». 2014. 288 p. [In Russian: Morgunov, K. Hydraulics. Sankt-Peterburh: Publishing House Lan].
  • 31. Sysoev, S. & Gavrilov, A. & Morozov, V. & et al. Modeling for maximum pressure cycle of external characteristics of high-speed piston engine. Modern problems of science and education. 2012. Vol. 4. Available at: https://www.science-education.ru/ru/article/view?id=6581
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-605dc2ed-bcad-40fb-9b96-f04d12a3553c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.