PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A methodology for online rotor stress monitoring using equivalent Green’s function and steam temperature model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The requirement of high operational flexibility of utility power plants creates a need of using online systems for monitoring and control of damage of critical components, e.g., steam turbine rotors. Such systems make use of different measurements and mathematical models enabling calculation of thermal stresses and their continuous control. The paper presents key elements of the proposed system and discusses their use from the point of view of thermodynamics and heat transfer. Thermodynamic relationships, well proven in design calculations, were applied to calculate online the steam temperature at critical locations using standard turbine measurements as input signals. The model predictions were compared with operational data from a real power plant during a warm start-up and show reasonably good accuracy. The effect of variable heat transfer coefficient and material properties on thermal stresses was investigated numerically by finite element method (FEM) on a cylinder model, and a concept of equivalent Green’s function was introduced to account for this variability in thermal stress model based on Duhamel’s integral. This approach was shown to produce accurate results for more complicated geometries by comparing thermal stresses at rotor blade groove computed using FEM and Duhamel’s integral.
Rocznik
Tom
Strony
13--37
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • GE Power sp. z o.o., Stoczniowa 2, 82-300 Elbląg, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Fiszera 14, Poland
  • GE Power sp. z o.o., Stoczniowa 2, 82-300 Elbląg, Poland
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Fiszera 14, Poland
Bibliografia
  • [1] Vogt J., Schaaf T., Helbig K.: Optimizing lifetime consumption and increasing flexibility using enhanced lifetime assessment methods with automated stress calculation from longterm operation data. In: Proc. ASME Turbo Expo 2013, San Antonio, June 03–07, 2013, GT2013-95068.
  • [2] Starkloff R., Alobaid F., Karner K., Epple B., Schmitz M., Boehm F.: Development and validation of a dynamic simulation model for a large coal-fired power plant. Appl. Therm. Eng. 91(2015), 496–506.
  • [3] Otterlee T., Lindsay G.: Using finite element analysis and thermal stress monitoring to manage turbine defects without mechanical intervention. Joint Power Generation Conference 3(1995), 295–299.
  • [4] Pahl G., Reitze W., Salm M.: Monitoring temperature changes in steam turbines. The Brown Boveri Rev. 51(1964), 3, 165–175.
  • [5] Busse L.: Anfahrsonde. BBC-Studie HTGD51147, 1973.
  • [6] Dawson R.: Monitoring and control of thermal stresses and component life expenditure in steam turbine. Proc. Int. Conf. on Modern Power Stations, AIM, Liege 1989.
  • [7] Sindelar R.: Control of the level of heat stress of the steam turbine metal during start-up and load changes. Skoda Rev. 4(1972), 19–30.
  • [8] Lausterer G.K., Franke J., Eitelberg E.: Mathematical modeling of a steam generator. Digital computer applications to process control. Proc 6th IFAC/IFIPInt.Conf., Duesseldorf 1980.
  • [9] Lausterer G.K.: On-line thermal stress monitoring using mathematical models. Control Eng. Pract. 5(1997), 1, 85–90.
  • [10] Ehrsam A.: Steam turbines for solar thermal applications. Proc of ASME Turbo Expo, Vancouver 2011, GT2011–46955.
  • [11] Sindelar R., Toewe W.: TENSOMAX — A retrofit thermal stress monitoring system for steam turbine. VGB Power Tech. 1(2000), 60–62.
  • [12] Rusin A., Łukowicz H., Lipka M., Banaszkiewicz M., Radulski W.: Continuous control and optimisation of thermal stresses in the process of turbine start-up. Proc. 6th Int. Cong. on Thermal Stresses, Vienna, 26–29 May 2005.
  • [13] Stevens G.L., Gerber D.A., Rosinski S.T.: Latest advances in fatigue monitoring technology using EPRI’s FatiguePro software. SMIRT 1999, 15.
  • [14] Greisbach T.J., Riccardella P.C., Gosselin S.R.: Application of fatigue monitoring to the evaluation of pressurizer surge lines. Nucl. Eng. Des. 129(1991), 163–176.
  • [15] Kuo A.Y., Tang S.S., Riccardella P.C.: An on-line fatigue monitoring system for power plants: Part I – direct calculation of transient peak stress through transfer matrices and Green’s functions. In: Proc. 1986 pressure vessels and piping conference and exhibition, PVP, ASME, Chicago, II, 112(1986), 25–32.
  • [16] Kiss E., Ranganath S.: On-line monitoring to assure structural integrity of nuclear reactor components. Int. J. Pres. Ves. Piping 34(1988), 3–15.
  • [17] Heliot J., Fritz R.: Framatome operating transients monitoring system used for equipment mechanical surveillance. Int. J. Pres. Ves. Piping 40(1989), 247–258.
  • [18] Aufort P., Bomont G., Chau T.H., Fournier I., Morilhat P., Souchois T., Cordier G.: On line fatiguemeter: A large experiment in French nuclear plants. Nucl. Eng. Des. 129(1991), 177–184.
  • [19] Taler J., Węglowski B., Zima W., Duda P., Grądziel S., Sobota T., Cebula A., Taler D.: Computer system for monitoring power boiler operation. In: Proc. IMechE, Part A: J. Power Energ. 222(2008), 13–24.
  • [20] Lee H.Y., Kim J.B., Yoo B.: Green’s function approach for crack propagation problem subjected to high cycle thermal fatigue loading. Int. J. Pres. Ves. Piping 76(1999), 487–494.
  • [21] Dhanuskodi R., Kaliappan R., Suresh S., Anantharaman N., Arunagiri A., Krishnaiah J.: Artificial neural networks model for predicting wall temperature of supercritical boiler. Appl. Therm. Eng. 90(2015), 749–753.
  • [22] Rusin A., Nowak G., Lipka M.: Practical algorithms for online stress calculations and heating process control. J. Therm. Stresses 37(2014), 11.
  • [23] Dominiczak K., Neural networks in thermal stress limiter of steam turbines. PhD Thesis, IFFM PAS, Gdańsk 2015 (in Polish).
  • [24] Song G., Kim B., Chang S.: Fatigue life evaluation for turbine rotor using Green’s function. Proc. Eng 10(2011), 2292–2297.
  • [25] Koo G.H., Kwon J.J., Kim W.: Green’s function method with consideration of temperature dependent material properties for fatigue monitoring of nuclear power plants. Int. J. Pres. Ves. Piping 86(2009), 187–195.
  • [26] Botto D., Zucca S., Gola M.M.: A methodology for on-line calculation of temperature and thermal stress under non-linear boundary conditions. Int. J. Pres. Ves. Piping 80(2003), 21–29.
  • [27] Zhang H.L., Liu S., Xie D., Xiong Y., Yu Y., Zhou Y., Guo R.: Online fatigue monitoring models with consideration of temperature dependent properties and varying heat transfer coefficients. Hindwai Publishing Corporation. Science and Technology of Nuclear Installations, 2013, ID 763175.
  • [28] Taler J.: Theory and practice of heat transfer processes identification. Ossolineum, Wrocław 1995 (in Polish).
  • [29] Lavagnoli S., De Maesschlack C., Paniagua G.: Uncertainty analysis of adiabatic wall temperature measurements in turbine experiments. Appl. Therm. Eng. 82(2015), 170–181.
  • [30] Badur J., Banaszkiewicz M., Karcz M., Winowiecki M., Numerical simulation of 3D flow through a control valve. Int. Conf. SYMKOM’99, Arturówek-Łódź, 5–8 Oct. 1999.
  • [31] Perycz S.: Steam and Gas Turbines. Maszyny Przepływowe Vol. 10, Ossolineaum 1992 (in Polish).
  • [32] Carslow H.S, Jaeger J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford 1959.
  • [33] Kapinos V.M., Gura L.A.: Heat transfer in a stepped labyrinth seal. Teploenergetika 20(1973), 22–25 (in Russian)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6058c288-9be7-40d6-bc85-95b5526d4f32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.