PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Corrosion Behaviour of Galvanised, Galvalume and Colour-Coated Steel Sheets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study corrosion behaviour of three coated steel sheets in different corrosive environments was evaluated using various characterisation techniques. Multiple types of corrosion tests, like salt spray test, 100% relative humidity test and chemical resistance test, were performed to report the corrosion resistance of samples in different corrosive environments. Enhanced corrosion resistance properties of the colour-coated samples were obtained from all the studies, followed by galvalume and galvanised samples. Cyclic voltammetry reveals a slightly higher pitting for the galvalume sample. SEM, EDS, XRD and Raman analyses for the salt spray tested and 100% humidity tested galvanised samples shows various corrosion products with their morphologies. XRD analysis reveals Zn5(OH)8Cl2H2O (simonkolleite), ZnO (zinc oxide), β-Zn (OH)2, Zn (OH)2 (zinc hydroxide) and Zn (ClO4)2 for salt spray tested samples whereas for the 100% relative humidity tested samples, main corrosion products are ZnO (zinc oxide), β-Zn (OH)2, Zn (OH)2 (zinc hydroxide), Fe and Zn. Raman spectroscopy reveals the presence of ZnO, β-FeOOH, white rust, green rust, FeCl2, Fe3O4, FeOH, Fe2O3 and δ-FeOH for salt spray tested samples, but for 100% humidity test, only ZnO is revealed.
Twórcy
  • Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India
autor
  • S J Engineers & Consult Ants, 35D, Charu Avenue, Kolkata - 700033, India
  • Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103, India
Bibliografia
  • [1] N. Arianpouya, M. Shishesaz, M. Arianpouya, M. Nematollahi, Evaluation of synergistic effect of nanozinc/nanoclay additives on the corrosion performance of zinc-rich polyurethane nanocomposite coatings using electrochemical properties and salt spray testing. Surf. Coat. Technol. 216, 199-206 (2013). DOI: https://doi.org/10.1016/j.surfcoat.2012.11.036
  • [2] T.A. Kepperta, G. Luckenederb, K.H. Stellnbergerb, G. Moria, H. Antrekowitsch, Investigation of the corrosion behavior of Zn-Al-Mg hot-dip galvanised steel in alternating climate tests. Corrosion 70 (12), 1238-1248 (2014). DOI: https://doi.org/10.5006/1158
  • [3] B. Boelen, B. Schimitz, J. Defourny, F. Blekkenhorst, A literature survey on the development of an accelerated laboratory test method for atmospheric corrosion of precoated steel products. Corros. Sci. 34 (11), 1923-1931 (1993). DOI: https://doi.org/10.1016/0010-938X(93)90028-F
  • [4] S. Schürz, G.H. Luckeneder, M. Fleischanderl, P. Mack, H. Gsaller, A.C. Kneissl, G. Mori, Chemistry of corrosion products on Zn-Al-Mg alloy coated steel. Corros. Sci. 52 (10), 3271-3279 (2010). DOI: https://doi.org/10.1016/j.corsci.2010.05.044
  • [5] A.K. Singh, G. Jha, N. Rani, N. Bandyopadhyay, T. Venugopalan, Premature darkening problem and its prevention in galvanised sheet surface. Surf. Coat. Technol. 200 (16-17), 4897-4903 (2006). DOI: https://doi.org/10.1016/j.surfcoat.2005.04.044
  • [6] H. Sun, S. Liu, L. Sun, A comparative study on the corrosion of galvanised steel under simulated rust layer solution with and with-out 3.5wt%NaCl. Int. J. Electrochem. Sci. 8, 3494-3509 (2013).
  • [7] E.D. Angel, R. Vera, F. Corvo, Atmospheric corrosion of galvanised steel in different environments in Chile and Mexico. Int. J. Electrochem. Sci. 10, 7985-8004 (2015).
  • [8] L. Kwiatkowski, J. Kwiecień, T. Szustkiewicz, Accelerated corrosion tests for protective properties for aluminium and zinc coatings. Mater. Sci. 32, 681-687 (1996). DOI: https://doi.org/10.1007/BF02538570
  • [9] A.P.D. Santos, S.M. Manhabosco, J.S. Rodrigues, L.F.P. Dick, Comparative study of the corrosion behaviour of galvanised, galvannealed and Zn55Al coated interstitial free steels. Surf. Coat. Technol. 279, 150-160 (2015). DOI: https://doi.org/10.1016/j.surfcoat.2015.08.046
  • [10] F. Deflorian, S. Rossi, M. Fedel, Organic coating degradation: comparison between natural and artificial weathering. Corros. Sci. 50 (8), 2360-2366 (2008). DOI: https://doi.org/10.1016/j.corsci.2008.06.009
  • [11] S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, A.C. Kneissl, Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment. Corros. Sci. 51 (10), 2355-2363 (2009). DOI: https://doi.org/10.1016/j.corsci.2009.06.019
  • [12] X. Zhang, T.N. Vu, P. Volovitch, C. Leygraf, K. Ogle, I.O. Wallinder, The initial release of zinc and aluminium from non-treated galvalume and the formation of corrosion products in chloride containing media. Appl. Surf. Sci. 258 (10), 4351-4359 (2012). DOI: https://doi.org/10.1016/j.apsusc.2011.12.112
  • [13] M. Mobin, A.U. Malik, F. Al-Muaili, M. Al-Hajri, Performance evaluation of a commercial polyurethane coating in marine environment. J. Mater. Eng. Perform. 21, 1292-1299 (2012). DOI: https://doi.org/10.1007/s11665-011-0034-x
  • [14] M. Hattori, A. Nishikata, T. Tsuru, EIS study on degradation of polymer coated steel under ultraviolet radiation. Corros. Sci. 52 (6), 2080-2087 (2010). DOI: https://doi.org/10.1016/j.corsci.2010.01.038
  • [15] A.R. Marder, The metallurgy of zinc-coated steel. Prog. Mater. Sci. 45 (3), 191-271 (2000). DOI: https://doi.org/10.1016/S0079-6425(98)00006-1
  • [16] R.P. Edavan, R. Kopinski, Corrosion resistance of painted zinc alloy coated steels. Corros. Sci. 51 (10), 2429-2442 (2009). DOI: https://doi.org/10.1016/j.corsci.2009.06.028
  • [17] J.G. Speight, Section-1: inorganic chemistry, Table 1.71, Lange’s Handbook of Chemistry, 2005 McGraw Hill, New York.
  • [18] X. Zhang, I.O. Wallinder, C. Leygraf, Atmospheric corrosion of Zn-Al coatings in a simulated automotive environment. Surf. Eng. 34 (9), 641-648 (2017). DOI: https://doi.org/10.1080/02670844.2017.1305658
  • [19] M. Manna, M. Dutta, A.N. Bhagat, Microstructure and electrochemical performance evaluation of Zn, Zn-5 wt.% al and Zn-20 wt.% al alloy coated steels. J. Mater. Eng. Perform. 30 (1), 627-637 (2021). DOI: https://doi.org/10.1007/s11665-020-05359-8
  • [20] C. Li, R. Ma, A. Du, Y. Fan, X. Zhao, X. Cao, Superhydrophobic film on hot-dip galvanised steel with corrosion resistance and self-cleaning properties. Metals 8 (9), 1-17 (2018). DOI: https://doi.org/10.3390/met8090687
  • [21] A.S. Sergienko, G.V. Redkin, A.S. Rozhkov, Y.I. Kuznetsov, Corrosion inhibition of galvanised steel by thin superhydrophobic phosphonate-siloxane films. Int. J. Corros. Scale Inhib. 11 (1), 322-338 (2022). DOI: https://doi.org/10.17675/2305-6894-2022-11-1-19
  • [22] D. Persson, D. Thierry, O. Karlsson, Corrosion and corrosion products of hot dipped galvanised steel during long term atmospheric exposure at different sites world-wide. Corros. Sci. 126, 152-165 (2017). DOI: https://doi.org/10.1016/j.corsci.2017.06.025
  • [23] T.C. Simpson, Accelerated corrosion test for aluminium-zinc alloy coatings. Corrosion 49 (7), 550-560 (1993). DOI: https://doi.org/10.5006/1.3316084
  • [24] S.P. Ali, C. Dehghanian, A. Kosari, Corrosion protection of the reinforcing steels in chloride-laden concrete environment through epoxy/polyaniline-camphorsulfonate nanocomposite coating. Corros. Sci. 90, 239-247 (2015). DOI: https://doi.org/10.1016/j.corsci.2014.10.015
  • [25] M. Yadav, I. Dey, S.K. Ghosh, A comparative study on the microstructure, hardness and corrosion resistance of epoxy coated and plain rebars. Mater. Res. Express. 9, 055504 (2022). DOI: https://doi.org/10.1088/2053-1591/ac6857
  • [26] A. Macias, C. Andrade, Corrosion of galvanised steel reinforcements in alkaline solution. Part I: Electrochemical Results. Brit. Corros. J. 22 (2), 113-118 (1987). DOI: https://doi.org/10.1179/000705987798271631
  • [27] F. Altmayer, Critical aspects of the salt spray test. Plating Surf. Finish. (1985).
  • [28] L. Dosdat, J. Petitjean, T. Vietoris, O. Clauzeau, Corrosion resistance of different metallic coatings on press-hardened steels for automotive. Steel Res. Int. 82 (6), 726-735 (2011). DOI: https://doi.org/10.1002/srin.201000291
  • [29] M. Zapponi, T. Pérez, C. Ramos, C. Saragovi, Prohesion and outdoors tests on corrosion products developed over painted galvanised steel sheets with and without Cr (VI) species. Corros. Sci. 47 (4), 923-936 (2005). DOI: https://doi.org/10.1016/j.corsci.2004.06.007
  • [30] Y. Liu, H. Li, Z. Li, EIS investigation and structural characterisation of different hot-dipped zinc-based coatings in 3.5%NaCl solution. Int. J. Electrochem. Sci. 8, 7753-7767 (2013).
  • [31] E. Palma, J. M. Puente, M. Morcillo, The atmospheric corrosion mechanism of 55%Al-Zn coating on steel. Corros. Sci. 40 (1), 61-68 (1998). DOI: https://doi.org/10.1016/S0010-938X(97)00112-1
  • [32] E. Dubuisson, P. Lavie, F. Dalard, J.P. Caire, S. Szunerits, Corrosion of galvanised steel under an electrolytic drop. Corros. Sci. 49 (2), 910-919 (2007). DOI: https://doi.org/10.1016/j.corsci.2006.05.027
  • [33] V.B. Moreira, A. Krummenauer, J.Z. Ferreira, H.M. Veit, E. Armelin, A. Meneguzzi, Computational image analysis as an alternate tool for the evaluation of corrosion in salt spray test. Stud. Ubb Chem. 65 (3), 45-61 (2020). DOI: https://doi.org/10.24193/subbchem.2020.3.04
  • [34] J.K. Odusote, O.S. Ayanda, Y.R. Abolore, Inhibition of corrosion of galvanised steel sheet in 1M HCl and H2SO4 by plukenetia conophora leaf extract. African Corros. J. 14-18 (2016).
  • [35] G. Vourlias, N. Pistofidis, G. Stergioudis, E. Pavlidou, D. Tsipas, Influence of alloying elements on the structure and corrosion resistance of galvanised coatings. Phys. Stat. Sol. A. 201 (7), 1518-1527 (2004). DOI: https://doi.org/10.1002/pssa.200306799
  • [36] R. Autengruber, G. Luckeneder, A.W. Hassel, Corrosion of press-hardened galvanised steel. Corros. Sci., 63, 12-19 (2012). DOI: https://doi.org/10.1016/j.corsci.2012.04.048
  • [37] G.A. El-Mahdy, A. Nishikata, T. Tsuru, Electrochemical corrosion monitoring of galvanised steel under cyclic wet-dry conditions. Corros. Sci. 42 (1), 183-194 (2000). DOI: https://doi.org/10.1016/S0010-938X(99)00057-8
  • [38] K. Suzumura, S. Nakamura, Environmental factors affecting corrosion of galvanised steel wires. J. Mater. Civil Eng. 16, 1-7 (2004). DOI: https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(1)
  • [39] S.C. Chung, S.L. Sung, C.C. Hsien, H.C. Shih, Application of EIS to the initial stages of atmospheric zinc corrosion. J. Appl. Electrochem. 30, 607-615 (2000). DOI: https://doi.org/10.1023/a:1003908219469
  • [40] E. Diler, B. Rouvellou, S. Rioual, B. Lescop, G.N. Vien, D. Thierry, Characterisation of corrosion products of Zn and Zn-Mg-Al coated steel in a marine atmosphere. Corros. Sci. 87, 111-117 (2014). DOI: https://doi.org/10.1016/j.corsci.2014.06.017
  • [41] K. Tano, S. Higuchi, Development and properties of zinc-aluminium alloy coated steel sheet with high corrosion resistance (super zinc). Nippon Steel Tech. Rep. 25, 29-37 (1985).
  • [42] Z.I. Ortiz, P. Díaz-Arista, Y. Meas, R. Ortega-Borges, G. Trejo, Characterization of the corrosion products of electrodeposited Zn, Zn-Co and Zn-Mn alloys coatings. Corros. Sci. 51 (11), 2703-2715 (2009). DOI: https://doi.org/10.1016/j.corsci.2009.07.002
  • [43] H.H. Hassan, Corrosion behaviour of zinc in sodium perchlorate solutions. Appl. Surf. Sci. 174 (3-4), 201-209 (2001). DOI: https://doi.org/10.1016/S0169-4332(01)00154-4
  • [44] Ph. Colomban, S. Cherifi, G. Despert, Raman identification of corrosion products on automotive galvanised steel sheets. J. Raman Spectrosc. 39 (7), 881-886 (2008). DOI: https://doi.org/10.1002/jrs.1927
  • [45] W. Miao, I.S. Cole, A.K. Neufeld, S. Furman, Pitting corrosion of Zn and Zn-Al coated steels in pH 2 to 12 NaCl solution. J. Electrochem. Soc. 154 (1) C7 (2007).
  • [46] W. Xu, L. Wei, Z. Zhang, Y. Liu, K.C. Chou, H. Fan, Q. Li, Effects of lanthanum addition on the microstructure and corrosion resistance of galvanised coating. J. Alloys Compd. 784, 859-868 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.01.075
  • [47] P. Qiu, C. Leygraf, I.O. Wallinder, Evolution of corrosion products and metal release from galvalume coatings on steel during short and long-term atmospheric exposures. Mater. Chem. Phys. 133 (1), 419-428 (2012). DOI: https://doi.org/10.1016/j.matchemphys.2012.01.054
  • [48] C. Cachet, F. Ganne, G. Maurin, J. Petitjean, V. Vivier, R. Wiart, EIS investigation of zinc dissolution in aerated sulfate medium. Part I: bulk zinc. Electrochim. Acta. 47 (3), 509-518 (2001). DOI: https://doi.org/10.1016/S0013-4686(01)00740-X
  • [49] H. Zhang, X.G. Li, C.W. Du, H.B. Qi, Corrosion behaviour and mechanism of the automotive hot dip galvanised steel with alkaline mud adhesion. Int. J. Miner. Metall. Mater. 16 (4), 414-421 (2009). DOI: https://doi.org/10.1016/S1674-4799(09)60073-X
  • [50] Q. Qu, C. Yan, Y. wan, C. Cao, Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc. Corros. Sci. 44 (12), 2789-2803 (2002). DOI: https://doi.org/10.1016/S0010-938X(02)00076-8
  • [51] Y. Li, Formation of nano-crystalline corrosion products on Zn-Al alloy coating exposed to seawater. Corros. Sci. 43 (9), 1793-1800 (2001). DOI: https://doi.org/10.1016/S0010-938X(00)00169-4
  • [52] Y. Ma, Y. Li, F. Wang, Corrosion of low carbon steel in atmospheric environments of different chloride contents. Corros. Sci. 51 (5), 997-1006 (2009). DOI: https://doi.org/10.1016/j.corsci.2009.02.009
  • [53] P. Refait, J.M.R. Genin, The mechanisms of oxidation of ferrous hydroxy chloride β-Fe2(OH)3 Clin aqueous solution: The formation of akagainite vs Goethite. Corros. Sci. 39 (3), 539-553 (1997). DOI: https://doi.org/10.1016/S0010-938X(97)86102-1
  • [54] T. Misawa, T.W. Kyuno Suetaka, S. Shimodaira, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels. Corros. Sci. 11 (1) 35-48 (1971). DOI: https://doi.org/10.1016/S0010-938X(71)80072-0
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60568a2c-dfca-4461-9d3c-00aa5addb299
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.