PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental estimation of thermal emissivity for the roofing paper in blue colour

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effective use of energy in various branches of economy is one of world trends in development of power engineering. Relevant energy consumption occurs during exploitation of buildings, so there is still potential to diminish it as far as heating, ventilation, and air conditioning are concerned. Particularly in summer season, the choice of respective roofing colour can play a decisive role for the heat flux transferred to the inside of the object. Decrease of heat flux causes a lower heat burden to the building and lower power consumption by the air conditioning systems. In winter, on the contrary, heat flux transferred to building’s interior should be higher, as a result, demand of energy for heating will be lower. However, calculations of the heat flux require that energy balance must be made for the object. Unfortunately, not all producers of roofing covers inform about the values of reflectivity and thermal emissivity of their products, which is, in turn, necessary for calculations. In the present paper, research methodology elaborated by authors is proposed for determination of thermal emissivity of roofing covers. The paper presents test stand, methodology, and research results for roofing paper in blue colour (as an example) for which the thermal emissivity is an unknown parameter.
Rocznik
Strony
181--194
Opis fizyczny
Bibliogr. 45 poz., rys., wykr., wz.
Twórcy
  • West Pomeranian Univerisity of Technology, Szczecin, Faculty of Mechanical Engineering and Mechatronics, al. Piastów 17, 70-310 Szczecin, Poland
  • West Pomeranian Univerisity of Technology, Szczecin, Faculty of Mechanical Engineering and Mechatronics, al. Piastów 17, 70-310 Szczecin, Poland
Bibliografia
  • [1] Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC, OJ UE, L 315/1.
  • [2] Pérez-Lombard L., Ortiz J., Pout Ch.: A review on buildings energy consumption information. Energ. Buildings 40(2008), 394–398 (DOI:10.1016/j.enbuild.2007.03.007).
  • [3] Allouhi A., Fouih Y.El., Kousksou T., Jamil Y., Zeraouli Y., Mourad Y.: Energy consumption and efficiency in buildings: current status and future trends. J. Clean. Prod. 109(2015), 118–130 (DOI: 10.1016/j.jclepro.2015.05.139).
  • [4] Berardi U.: Building energy consumption in US, EU, and BRIC countries. Procedia Eng. 118(2015), 128–136 (DOI: 10.1016/j.proeng.2015.08.411).
  • [5] Zhao H., Magoulès F.: A review on the prediction of building energy consumption. Renew. Sust. Energ. Rev. 16(2012), 6, 3586–3592 (DOI: 10.1016/j.rser.2012.02.049).
  • [6] Fumo N.: A review on the basics of building energy estimation. Renew. Sust. Energ. Rev. 31(2014), 53–60 (DOI: 10.1016/j.rser.2013.11.040).
  • [7] Cao X., Dai X., Liu J.: Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energ. Buildings 128(2016), 198–213 (DOI: 10.1016/j.enbuild.2016.06.089).
  • [8] Levinson R., Akbari H.: Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energ. Effic. 3(2010), 1, 53–109 (DOI: 10.1007/s12053-008-9038-2).
  • [9] Anand Y., Gupta A., Maini A., Gupta A., Sharma A., Khajuria A., Gupta S., Sharma S., Anand S., Tyagi S.K.: Comparative thermal analysis of different cool roof materials for minimizing building energy consumption. J. Eng. (2014), 685640, 1–9 (DOI: 10.1155/2014/685640).
  • [10] Pisello A.L., Cotana F., Brinchi L.: On a cool coating for roof clay tiles: development of the prototype and thermal-energy assessment. Energy Proced. 45(2014), 453–462 (DOI: 10.1016/j.egypro.2014.01.049).
  • [11] Sandin O., Nordin J., Jonsson M.: Reflective properties of hollow microspheres in cool roof coatings. J. Coat. Technol. Res. 14(2017) 4, 817–821 (DOI: 10.1007/s11998-017-9973-y).
  • [12] Qin Y., He Y., Wu B., Ma S., Zhang H.: Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energ. Buildings 156(2017), 218–224 (DOI: 10.1016/j.enbuild.2017.09.090).
  • [13] Šabiková J., Krčmárová L.: Roof surface color and its influence on indoor temperatures. JSCMT 1(2016), 2, 60–63.
  • [14] Di Giuseppe E., Pergolini M., Stazib F.: Numerical assessment of the impact of roof reflectivity and building envelope thermal transmittance on the UHI effect. Energy Proced. 134(2017), 404–413 (DOI: 10.1016/j.egypro.2017.09.590).
  • [15] Suehrcke H., Peterson E.L., Selby N.: Effect of roof solar re?ectance on the building heat gain in a hot climate. Energ. Buildings 40(2008), 2224–2235 (DOI:10.1016/j.enbuild.2008.06.015).
  • [16] Zapałowicz Z.: Influence of irradiance and ambient temperature on roof cover temperature and heat flux transferred to interior of building. JMEE 41,(2017) 1, 107–112. (See also http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech9eb063db-df3a-4f1f-beee-19b55a1686af/c/jmee_2017_01_107112_influence_zapalowicz.pdf (accessed 28.08.2017). )
  • [17] Zapałowicz Z.: Influence roof cover material on the heat flux transferred to the interior of building. In: 24 Symposium Nutzung Regenerative Energiequellen und Wasserstofftechnik, 9–11 Nov. 2017 Stralsund, (2017), 167–176. (See also https://www.hochschule-stralsund.de/fileadmin/hs-stralsund/FAK_-ETI/Bilder/Veranstaltungen_und_News/Tagungsband.pdf (accessed 26.02.2018).)
  • [18] Mansouri O., Belarbib R., Bourbia F.: Albedo effect of external surfaces on the energy loads and thermal comfort of building. Energy Proced. 139(2017), 571–577 (DOI: 10.1016/j.egypro.2017.11.255).
  • [19] Li H., Harwey J., Kendall A.: Field measurement of albedo for different land cover materials and effects on thermal performance. Energ. Buildings 59(2013), 536–546.
  • [20] Prado R.T.A., Ferreira F.L.: Measurement of albedo and analysis of its influence the surface temperature of building roof materials. Energ. Buildings 37(2015), 295–300 (DOI: 10.1016/j.enbuild.2004.03.009).
  • [21] Uemoto K.L., Sato N.M.N., John V.M.: Estimating thermal performance of cool colored paints. Energ. Buildings 42(2010), 17–22 (DOI:10.1016/j.enbuild.2009.07.026).
  • [22] Wang B., Koh W.S., Liu H., Yik Y., Bui V.P.: Simulation and validation of solar heat gain in real urban environments. Energ. Buildings 123(2017), 261–276 (DOI: 10.1016/j.buildenv.2017.07.006).
  • [23] Yaghoobbian N., Kleissl J.: Effect of reflective pavements on building energy use. Urban Climate 2(2012), 25–42 (DOI: 10.1016/j.uclim.2012.09.002).
  • [24] Taleb D., Abu-Hijleh B.: Urban heat islands: Potential effect of organic and structured urban configurations on temperature variations in Dubai UAE. Renew. Energ. 50(2013), 747–762 (DOI: 10.1016/j.renene.2012.07.030).
  • [25] Santamouris M.: Cooling the cities – A review of reflective and green roof mitigation technologies of fight heat island and improve comfort in urban environment. Sol. Energ. 103(2014) 682–703 (DOI: 10.1016/j.solener.2012.07.003).
  • [26] Santamouris M.: Using cool pavements as a mitigation strategy to fight urban heat island – A review of actual developments. Renew. Sust. Energ. Rev. 26(2013), 224–240 (DOI: 10.1016/j.rser.2013.05.047).
  • [27] Monczyński B., Ksit B.: To whom cool roofs are needed in Poland. Inżynier Budownictwa. 147(2017), 2, 96–100 (in Polish).
  • [28] Akbari H., Levinson R., Rainer L., Konopaki S.: Monitoring the energy-use effects of cool roofs on California commercial buildings. Lawrence Berkeley National Laboratory, 2004, https://escholarship.org/uc/item/5j49q2kg
  • [29] Haverstic T., Sullivan K., Smithwick J.: Impact of solar reflectance attenuation and roof cleaning on a cool roof: assessing return on investment for facility management. J. Fac. Manage. Res. 1(2017), 2, 72–85.
  • [30] Al-Hafiz B., Musy M., Hasan T.: A study on the impact of changes in the materials reflection coefficient for achieving sustainable urban design. Procedia Environ. Scien. 38(2017), 562–570 (DOI: 10.1016/j.proenv.2017.03.126).
  • [31] Qin Y., He H.: A new simplified method for measuring the albedo of limited extent targets. Sol. Energ. 157(2017), 1047–1055 (DOI: 10.1016/j.solener.2017.09.027).
  • [32] Athanasopoulos N., Siakavellas N.J.: Programmable thermal emissivity structures based on bioinspired self-shape materials. Sci. Rep. (2015), 5:17682 (DOI: 10.1038/srep17682).
  • [33] Shafiue M., Kim R., Rafiq M.: Green roof benefits, opportunities and challenges – A review. Renew. Sust. Energ. Rev. 90(2018), 757–773 (DOI: 10.1016/j.rser.2018.04.006).
  • [34] Berardi U.: State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energ. 115(2014), 411–428 (DOI: 10.1016/j.apenergy.2013.10.047).
  • [35] Li W.C., Yeung K.K.A.: A comprehensive study of green roof performance from environmental perspective. Int. J. Sust. Built Env. 3 (2014), 1, 127–134 (DOI:10.1016/j.ijsbe.2014.05.001).
  • [36] Oberndorfer E, Lundholm J., Bass B., Coffman R.R., Doshi H., Gaffin N.D.S., Köhler M., Liu K.K.Y., Rowe B.: Green roofs as urban ecosystems: ecological structures, functions, and services. BioScience 57(2007), 10, 823– 833 (www.biosciencemag.org (accessed 26.02.2018).
  • [37] Chung M.H., Park J.C, Ko M.J.: Effect of solar radiative properties of existing building roof materials on the energy use in humid continental climates. Energ. Buildings 102(2015), 172–180 (DOI: 10.1016/j.enbuild.2015.05.022).
  • [38] Zapałowicz Z.: Simplified methodology to estimate the emissivity coefficient for roof covers. E3S Web of Conf. 70 01021 (2018), (DOI:10.1051/e3sconf/20187001021)
  • [39] Walterowicz A.: Influence of roof cover color on the energy flux transferred to the building. BEng thesis, West Pomeranian University of Technology, Szczecin 2018, (in Polish).
  • [40] https://www.apar.pl/rejestrator-danych-ar206.html (accessed 28.08.2017)
  • [41] http://www.label.pl/po/rek900.html (accessed 28.08.2017)
  • [42] Nowak H.: The sky temperature in net radiant heat loss calculations from low-sloped roofs. Infrared Phys. 29(1989), 2-4, 231–232.
  • [43] Chwieduk D.: Solar energy of the building. Arkady, Warszawa, 2011, 40–41 (in Polish). ISBN 978-83-213-4711-0.
  • [44] Pluta Z.: Theoretical basis of photothermal solar energy conversion. Oficyna Wydawn. Politechniki Warszawskiej, Warszawa, 2000 (in Polish). ISBN 83-7207-229-9
  • [45] http://coolroofs.org (accessed 28.08.2017)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60536d41-f071-48e2-a877-7eb0ae13030a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.