PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calibration performance investigation of an uncalibrated indigenous artefact probing for five-axis machine tool

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On machine measurement of artefacts such as single ball, multiple balls or even prismatic shape artefact is gaining popularity for the calibration of five-axis machine tools. However, calibration results can be degraded due to errors from different process variables such as the measurement strategies, rotary axes indexations and artefact dismount and remount cycles. This research investigates the repeatability of uncalibrated indigenous artefact probing and machine tool error parameters calibration against a number of process variables. Uncertainties of the estimated parameters are estimated to quantify the calibration quality.
Słowa kluczowe
Rocznik
Strony
33--42
Opis fizyczny
Bibliogr. 17 poz., tab., rys.
Twórcy
autor
  • Mechanical Engineering Dept., Polytechnique Montréal, Montréal (QC), Canada
autor
  • Mechanical Engineering Dept., Polytechnique Montréal, Montréal (QC), Canada
Bibliografia
  • [1] RAHMAN M.M., MAYER J.R.R., 2014, Five axis machine tool volumetric error prediction through an indirect estimation of intra and inter axis error parameters by probing facets on a scale enriched uncalibrated indigenous artefact, Precision Engineering, 40, 94-105.
  • [2] SCHWENKE H., KNAPP W., HAITJEMA H., WECKENMANN A., SCHMITT R., DELBRESSINE F., 2008, Geometric error measurement and compensation of machines—An update, CIRP Annals - Manufacturing Technology, 57/2, 660-675.
  • [3] ERKAN T., MAYER J.R.R., DUPONT Y., 2011, Volumetric distortion assessment of a five-axis machine by probing a 3D reconfigurable uncalibrated master ball artefact, Precision Engineering, 35/1, 116-125.
  • [4] MAYER J.R.R., 2012, Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact, CIRP Annals - Manufacturing Technology, 61/1, 515-518.
  • [5] WEIKERT S., KNAPP W., 2004, R-test, a new device for accuracy measurements on five axis machine tools, CIRP Annals - Manufacturing Technology, 53/1, 429-432.
  • [6] IBARAKI S., IRITANI T., MATSUSHITA T., 2012, Calibration of location errors of rotary axes on five-axis machine tools by on-the-machine measurement using a touch-trigger probe, International Journal of Machine Tools and Manufacture, 58, 44-53.
  • [7] CAUCHICK-MIGUEL P.A., KINGS T.G., 1998, Factors which influence CMM touch trigger probe performance, International Journal of Machine Tools and Manufacture, 38/4, 363-374.
  • [8] WOZNIAK A., DOBOSZ M., 2005, Factors influencing probing accuracy of a coordinate measuring machine, IEEE Transactions on Instrumentation and Measurement, 54/6, 2540-2548.
  • [9] JOHNSON R.P., QINGPING Y., BUTLER C., 1998, Dynamic error characteristics of touch trigger probes fitted to coordinate measuring machines, Proc. IMTC/98 Conference. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is going (Cat. No.98CH36222), 18-21 May 1998, IEEE, 1168-1172
  • [10] JANKOWSKI M., WOZNIAK A., BYSZEWSKI M., 2014, Machine tool probes testing using a moving inner hemispherical master artefact, Precision Engineering, 38/2, 421-427.
  • [11] JANKOWSKI M., WOZNIAK A., 2016, Mechanical model of errors of probes for numerical controlled machine tools, Measurement: Journal of the International Measurement Confederation, 77, 317-326.
  • [12] VERMA M.R., CHATZIVAGIANNIS E., JONES D., MAROPOULOS P.G., 2014, Comparison of the measurement performance of high precision multi-axis metal cutting machine tools, Proc. International Conference on Digital Enterprise Technology - DET 2014 Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution, 25- 28 March 2014, Elsevier, 138-145.
  • [13] RAMESH R., MANNAN M.A., POO A.N., 2000, Error compensation in machine tools - a review. Part II: Thermal errors, International Journal of Machine Tools and Manufacture, 40/9, 1257-1284.
  • [14] MARES M., HOREJS O., HORNYCH J., SMOLIK J., 2013, Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources, Journal of Machine Engineering, 13/1, 24-36.
  • [15] JEDRZEJEWSKI J., KWASNY W., 2015, Development Of Machine Tool Operational Properties. Journal of Machine Engineering, 15/1, 5-24.
  • [16] MAYER J.R.R., RAHMAN M.M., LOS A., 2015, An uncalibrated cylindrical indigenous artefact for measuring inter-axis errors of a five-axis machine tool, CIRP Annals- Manufacturing Technology, 64/1, 487-490.
  • [17] JCGM, 102, 2011, Evaluation of measurement data – Supplement 2 to the “Guide to the expression of uncertainty in measurement” – Extension to any number of output quantities," GUM uncertainty framework.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6051f106-7f8e-4590-af97-13d51541b65f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.