PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of Concrete Surface with Higher Fatty Acids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research presented in the paper concerns the production of innovative hydrophobizing agents and demonstration their effectiveness on a concrete surface. The starting materials are based on natural oils, water‒soluble silanes and siloxanes, and/or tap water. Aqueous preparations are characterized by properties which reduce the impact of volatile organic compounds (VOCs) on the environment, as they consist only of biodegradable components. Studies have shown that the higher fatty acids from vegetable oils and derived from the glycerin phase can be used as a component of concrete hydrophobizing agents, meeting the standard requirements for such agents. Analysis of the use of vegetable oil as a base compound for the production of industrial agents provides at least 95% confidence in its biodegradability. The reference concrete after the frost resistance test showed a weight loss of 1.8%. In the case of hydrophobization, the weight loss was 33.3 to 72% less than the reference samples. In the case of concrete hydrophobized with the glycerin agents, the salt crystallization occurred inside the structure of the material without causing any damage, with the reference concrete showing a weight loss of 0.8%.
Twórcy
  • Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
  • Faculty of Technical Sciences, John Paul II University of Applied Sciences, ul Sidorska 95/97, 21-500 Biała Podlaska, Poland
  • Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
  • Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland
autor
  • PGE EC S.A. Department of Heat and Power Plant in Lublin Wrotków, ul. Inżynierska 4, 20-484 Lublin, Poland
Bibliografia
  • 1. Santana-Carrillo, J.L.; Burciaga-Diaz, O.; Escalante-Garcia, J.I. Blended Portland cement with high limestone loads modified with a waste glass based sodium silicate of different ratios SiO2/Na2O. Constr. Build. Mater. 2022; 345: 128411. DOI: 10.1016/j.conbuildmat.2022.128411
  • 2. Ebolor, A.; Agarwal, N.; Brem, A. Sustainable development in the construction industry: The role of frugal innovation. J. Clean. Prod. 2022; 380: 134922. DOI: 10.1016/j.jclepro.2022.134922
  • 3. Zakari A., Khan I., Tan D., Alvarado R., Dagar V. Energy efficiency and sustainable development goals (SDGs). Energy 2022; 239: 122365.
  • 4. Tang S.W., Yao Y., Andrade C., Li Z.J. Recent durability studies on concrete structure. Cement and Concrete Research 2015; 78: 143–154.
  • 5. Raczkiewicz W., Koteš P., Konečný P. Influence of the type of cement and the addition of an airentraining agent on the effectiveness of concrete cover in the protection of reinforcement against corrosion. Materials (Basel) 2021; 14: 4657.
  • 6. Schueremans L., Van Gemert D., Giessler S. Chloride penetration in RC-structures in marine environment – Long term assessment of a preventive hydrophobic treatment. Construction & Building Materials 2007; 21: 1238–1249.
  • 7. Wang, R.; Zhang, Q.; Li, Y. Deterioration of concrete under the coupling effects of freeze–thaw cycles and other actions: A review. Constr. Build. Mater. 2022; 319: 126045.
  • 8. Zhang, H.; Gao, P.; Pan, Y.; Zhang, Z. Effects of surface states on salt-frost scaling resistance of cement concrete. Case Stud. Constr. Mater. 2019; 11: e00287. DOI: 10.1016/j.cscm.2019.e00287
  • 9. Hu, J.Y.; Zhang, S.S.; Chen, E.; Li, W.G. A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Constr. Build. Mater. 2022; 325: 126718.
  • 10. Franzoni E., Pigino B., Pistolesi C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cement and Concrete Composites 2013; 44: 69–76.
  • 11. Elnaggar E.M., Elsokkary T.M., Shohide M.A., El-Sabbagh B.A., Abdel-Gawwad H.A. Surface protection of concrete by new protective coating. Construction & Building Materials 2019; 220: 245–252.
  • 12. Joshi S., Goyal S., Mukherjee A., Reddy M.S. Protection of concrete structures under sulfate environments by using calcifying bacteria. Construction & Building Materials 2019; 209: 156–166.
  • 13. Coffetti D., Crotti E., Gazzaniga G., Gottardo R., Pastore T., Coppola L. Protection of concrete structures: Performance analysis of different commercial products and systems. Materials (Basel) 2021; 14: 3719.
  • 14. Brenna, A.; Bolzoni, F.; Beretta, S.; Ormellese, M. Long-term chloride-induced corrosion monitoring of reinforced concrete coated with commercial polymer-modified mortar and polymeric coatingsConstr. Build. Mater. 2013; 48: 734–744. DOI10.1016/j.conbuildmat.2013.07.099
  • 15. Eraslan F.N., Bhat M.A., Gaga E.O., Gedik K. Comprehensive Analysis of Research Trends in Volatile Organic Compounds Emitted from Building Materials: A Bibliometric Analysis. In Ecological and Health Effects of Building Materials; Springer, Cham 2022; 87–112.
  • 16. Wen, L.; Fu, H.; Hu, J.; Huang, S. Analytical solution of coupled heat-moisture-VOCs transfer process in liquid desiccant dehumidifier for indoor VOCs removal. Build. Environ. 2022; 227: 109791, DOI: 10.1016/j.buildenv.2022.109791
  • 17. Wu Y., Dong L., Shu X., Yang Y., She W., Ran Q. A review on recent advances in the fabrication and evaluation of superhydrophobic concrete. Compos. Composites Part B: Engineering 2022; 237: 109867.
  • 18. González-Coneo J., Zarzuela R., Elhaddad F., Carrascosa L.M., Gil M.L.A., Mosquera M.J. Alkylsiloxane/alkoxysilane sols as hydrophobic treatments for concrete: A comparative study of bulk vs surface application. Journal of Building Engineering 2022; 46: 103729.
  • 19. Barnat-Hunek D., Szafraniec M., Pavlík Z. The hydrophobization of high strength concretes with plastic waste. In Proceedings of the AIP Conference Proceedings; 2020; 2305: 20001.
  • 20. Szafraniec M., Barnat-Hunek D., Grzegorczyk-Frańczak M., Trochonowicz M. Surface Modification of Lightweight Mortars by Nanopolymers to Improve Their Water-Repellency and Durability. Materials (Basel) 2020; 13: 1350.
  • 21. Barnat-Hunek D., Szafraniec M., Pavlík Z., Łagód G. Influence of nanopolymer hydrophobization additives on frost resistance of concrete. In Proceedings of the AIP Conference Proceedings; AIP Publishing LLCAIP Publishing, 2022; 2488: 020001.
  • 22. Zafeiropoulou, T.; Rakanta, E.; Batis, G. Performance evaluation of organic coatings against corrosion in reinforced cement mortars. In Proceedings of the Progress in Organic Coatings; Elsevier, 2011; 72: 175–180.
  • 23. Kachel M., Krawczuk A. The Prospects of Using Vegetable Oil in the Building Industry. In Farm Machinery and Processes Management in Sustainable Agriculture. FMPMSA 2022. Lecture Notes in Civil Engineering; Pascuzzi, S., Santoro, F., Ed.; Springer, Cham 2023; 289–296.
  • 24. Barnat-Hunek D., Szafraniec M. Biodegradable release agents for releasing concrete products from moulds. Izolacje 2021; 26.
  • 25. Barnat-Hunek D., Szafraniec M. Influence of biodegradable release oils on the physical and mechanical properties of light-colored architectural concrete. Materials (Basel) 2021; 14: 4630.
  • 26. Szafraniec M., Barnat-Hunek D. Effect of natural release oils on concrete wettability. In Proceedings of the AIP Conference Proceedings; AIP Publishing LLCAIP Publishing, 2021; 2429: 020037.
  • 27. Polish Committee for Standardization. PN-EN ISO 9408:2005. Water quality – Determination of total aerobic biodegradation of organic compounds in the aquatic environment by determination of oxygen demand in a closed respirometer; PKN: Warsaw, Poland, 2005.
  • 28. Andrzejuk W., Barnat-Hunek D., Fic S., Styczeń J. Wettability and surface free energy of mineralasphalt mixtures with dolomite and recycled Aggregate. In: Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing, 2019; 471: 032011.
  • 29. Polish Committee for Standardization. PN-B-06250:1988. Ordinary concrete (In Polish); PKN: Warsaw, Poland, 1988.
  • 30. Polish Committee for Standardization. PN-EN ISO 7783:2018–11. Paints and varnishes – Paint products and coating systems for exterior use on masonry and concrete – Part 2: Determination and classification of water vapor transmission rate (permeability); PKN: Warsaw, Poland, 2018.
  • 31. Polish Committee for Standardization. PN-EN 772–11:2011. Determination of absorption of aggregate concrete, artificial stone and natural stone masonry units caused by capillary rise and initial water absorption of ceramic masonry units; PKN: Warsaw, Poland, 2011.
  • 32. Polish Committee for Standardization. PN-B-06265:2018–10. Concrete – Specification, performance, production and conformity – National Annex to PN-EN 206+A1:2016–12; PKN: Warsaw, Poland, 2018.
  • 33. Polish Committee for Standardization. PN-EN 12370:2001. Natural stone test methods – Determination of resistance to salt crystallisation; PKN: Warsaw, Poland, 2001.
  • 34. Polish Committee for Standardization. PN-EN ISO 2811–1:2016–04. Paints and varnishes – Determination of density – Part 1: Pycnometer method; PKN: Warsaw, Poland, 2016.
  • 35. Polish Committee for Standardization. PN-EN ISO 2431:2012. Paints and varnishes – Determination of time of efflux using efflux cups; PKN: Warsaw, Poland, 2012.
  • 36. OECD Test No. 301: Ready Biodegradability. OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, 1992.
  • 37. Kang H., Kang S., Lee B. Strength and water-repelling properties of cement mortar mixed with water repellents. Materials (Basel) 2021; 14(18): 5407.
  • 38. Barnat-Hunek D., Łagód G., Fic S., Jarosz-Hadam M. Effect of polysiloxanes on roughness and durability of basalt fibres-reinforced cement mortar. Polymers (Basel) 2018; 10: 420.
  • 39. Liu Z., Hansen W. Effect of hydrophobic surface treatment on freeze-thaw durability of concrete. Cement and Concrete Composites 2016; 69: 49–60.
  • 40. Suleiman A.R., Soliman A.M., Nehdi M.L. Effect of surface treatment on durability of concrete exposed to physical sulfate attack. Construction & Building Materials 2014; 73: 674–681.
  • 41. Li S., Zhang W., Liu J., Hou D., Geng Y., Chen X., Gao Y., Jin Z., Yin B. Protective mechanism of silane on concrete upon marine exposure. Coatings 2019; 9: 558.
  • 42. Szubert K., Dutkiewicz A., Nowicki M., Maciejewski H. Fluorocarbosilane-Based Protective Coatings for Concrete. Materials (Basel, Switzerland) 2022; 15: 5994.
  • 43. Maravelaki-Kalaitzaki P. Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cement and Concrete Research 2007; 37: 283–290.
  • 44. Zhu Y.G., Kou S.C., Poon C.S., Dai J.G.; Li Q.Y. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cement and Concrete Composites 2013; 35: 32–38.
  • 45. Shi J., Zhao L., Han C., Han H. The effects of silanized rubber and nano-SiO 2 on microstructure and frost resistance characteristics of concrete using response surface methodology (RSM). Construction & Building Materials 2022; 344: 128226.
  • 46. Wang F., Liang C., Yang W., Zhang X. Effects of frost thickness on dynamic defrosting on vertical hydrophobic and superhydrophobic fin surfaces. Energy and Buildings 2020; 223; 110134.
  • 47. Kim K., Lee K.S. Frosting and defrosting characteristics of a fin according to surface contact angle. International Journal of Heat and Mass Transfer 2011; 54: 2758–2764.
  • 48. Ibrahim M., Al-Gahtani A.S., Maslehuddin M., Dakhil F.H. Use of surface treatment materials to improve concrete durability. Journal of Materials in Civil Engineering 1999; 11: 36–40.
  • 49. Aguiar J.B., Camoes A., Moreira P.M. Performance of Concrete in Aggressive Environment. International Journal of Concrete Structures and Materials 2008; 2: 21–25.
  • 50. Winkler E.M., Singer P.C. Crystallization pressure of salts in stone and concrete. Geological Society of America Bulletin 1972; 83: 3509–3514.
  • 51. Benavente D., García Del Cura M.A., Fort R.; Ordóñez S. Thermodynamic modelling of changes induced by salt pressure crystallization in porous media of stone. Journal of Crystal Growth 1999; 204: 168–178.
  • 52. Tsui N., Flatt R.J., Scherer G.W. Crystallization damage by sodium sulfate. Journal of Cultural Heritage 2003; 4: 109–115.
  • 53. Vipulanandan C., Parihar A., Issac M. Testing and modeling composite coatings with silanes for protecting reinforced concrete in saltwater environment. Journal of Materials in Civil Engineering 2011; 23: 1602–1608.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-604a0f40-40b8-4969-af0c-d1574ddd830c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.