PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Research on Spatio-Temporal Differentiation of a Vegetation Index in Evaluating Sunflower Hybrid Plasticity and Growth-Regulators in the Steppe Zone of Ukraine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study was to establish dependence of sunflower productivity on hybrid plasticity under the climatic conditions of the Steppe zone and effectiveness of growth-regulators on the basis of the analysis of differentiation of a vegetation index. The research on the development and productivity of different sunflower hybrids under the natural-climatic conditions of the Steppe zone of Ukraine was conducted in the years of 2019 (medium-wet), 2020 (dry) and 2021 (wet). Spatio-temporal differentiation of the vegetation of sunflower hybrids was established on the basis of calculation of a normalized difference vegetation index (NDVI) using the data of the decoded space images of Sentinel 2. Cartographic and grapho-analytical materials reflecting the reaction of plants to natural-climatic conditions and multifunctional growth-regulators were obtained. The dependence of the reaction of sunflower hybrids to multifunctional growth-regulators on their plasticity in response to the natural-climatic conditions of the Steppe zone was established. There was a weak reaction to application of growth-regulators of the sunflower hybrids Oplot and P64HE133 which are characterized by a high level of plasticity in response to the natural-climatic conditions of the Steppe zone. It was proven that the application of the biological preparation Helafit Combi exceeded the level of agrocenoses productivity in comparison with the chemical preparation ArchitectТМ by 1.1-5.4%. It was established that foliar treatment with growth-regulators led to a decline in water uptake by the sunflower hybrids by 1.2–10.0% in the dry year, by 3.8–8.6% in the medium-wet year and by 3.7%–21.9% in the wet year. There was a significant reduction in the level of water uptake by the hybrid Hector – by 7.7–10.0% and the hybrid 8KH477KL – by 1.2–21.9%. The research results are the basis for forecasting the development of sunflower hybrid crops with further measurement of the crop productivity that allows establishing a probable level of efficiency of sunflower hybrid production by agricultural producers under the climatic conditions of the Steppe zone.
Rocznik
Strony
144--165
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Kherson State Agrarianand Economic University, Kherson, Stritens’ka Str. 23, 73006, Ukraine
  • Mykolayiv National Agrarian University, Mykolayiv,George Gongadze Str. 9, 54020, Ukraine
  • Kherson State Agrarianand Economic University, Kherson, Stritens’ka Str. 23, 73006, Ukraine
  • Kherson State Agrarianand Economic University, Kherson, Stritens’ka Str. 23, 73006, Ukraine
  • Mykolayiv National Agrarian University, Mykolayiv,George Gongadze Str. 9, 54020, Ukraine
Bibliografia
  • 1. Anfang M., Shani E. 2021. Transport mechanisms of plant hormones. Current Opinion in Plant Biology, 63, 102055. https://doi.org/10.1016/j.pbi.2021.102055
  • 2. Assan E., Suvedi M., Olabisi L.S., Bansah K.J. 2020. Climate change perceptions and challenges to adaptation among smallholder farmers in semi-arid Ghana: A gender analysis. Journal of Arid Environments, 182, 104247. https://doi.org/10.1016/j.jaridenv.2020.104247
  • 3. Beyer M., Ahmad R., Yang B., Rodríguez-Bocca P. 2023. Deep spatial-temporal graph modeling for efficient NDVI forecasting. Smart Agricultural Technolog, 4, 100172. https://doi.org/10.1016/j.atech.2023.100172
  • 4. Bhattacharya A. 2019. Effect of High Temperature Stress on the Metabolism of Plant Growth Regulators. Effect of High Temperature on Crop Productivity and Metabolism of Macro Molecules, 485–591. http://dx.doi.org/10.1016/B978-0-12-817562-0.00006-9
  • 5. Breus D., Yevtushenko O., Skok S., Rutta O. 2019. Retrospective studies of soil fertility change on the example of the Kherson region (Ukraine). International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 19(5.1), 645–652.
  • 6. Breus D., Yevtushenko O., Skok S., Rutta O. 2020. Method of forecasting the agro-ecological state of soils on the example of the South of Ukraine. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 20(5.1), 523–528.
  • 7. Didora V.G., Smaglii O.F., Ermantraut E.R. 2013. Methodology of scientific research in agronomy: study guide. Kyiv: Center for Educational Literature, 264. (in Ukrainian)
  • 8. Dikshit A., Pradhan B., Alamri A.M. 2021. Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model. Science of the Total Environment, 755(2), 142638. https://doi.org/10.1016/j.scitotenv.2020.142638
  • 9. Ding Y., He X., Zhou Zh., Hu J., Cai H., Wang X., Li L., Xu J., Shi H. 2022. Response of vegetation to drought and yield monitoring based on NDVI and SIF. CATENA, 2019, 106328. https://doi.org/10.1016/j.catena.2022.106328
  • 10. Domaratskiy E.O., Zhuykov O.G., Ivaniv M.O. 2018. Influence of Sowing Periods and Seeding Rates on Yield of Grain Sorghum Hybrids under Regional Climatic Transformations. Indian Journal of Ecology, 45(4), 785–789.
  • 11. Domaratskiy Ye. 2021. Leaf Area Formation and Photosyntetic Activity of Sunflower Plents Depending on Fertilizers and Growth Regulators. Journal of Ecological Engineering, 22(6), 99–105. https://doi.org/10.12911/22998993/137361
  • 12. Domaratskiy Ye., Bazaliy V., Dobrovol’skiy A., Pichura V., Kozlova O. 2022. Influence of Eco-Safe Growth-Regulating Substances on the Phytosanitary State of Agrocenoses of Wheat Varieties of Various Types of Development in Non-Irrigated Conditions of the Steppe Zone. Journal of Ecological Engineering, 23(8), 299–308. https://doi.org/10.12911/22998993/150865
  • 13. Domaratskiy Y., Kozlova O., Kaplina A. 2020. Economic Efficiency of Applying Environmentally Friendly Fertilizers in Production Technologies in the South of Ukraine. Indian Journal of Ecology, 47(3), 624–629.
  • 14. DSTU 6068:2008. Sunflower seeds. Varietal and sowing qualities. Specifications. http://online.budstandart.com/ua/catalog/doc-page?id_doc=74272 (in Ukrainian)
  • 15. DSTU 7011:2009. Sunflower. Specifications. https://elevator.com.ua/sites/default/files/docs/dstu_7011.pdf (in Ukrainian)
  • 16. Dudiak N., Pichura V., Potravka L., Stratichuk N. 2021. Environmental and economic effects of water and deflation destruction of steppe soil in Ukraine. Journal of Water and Land Development, 50, 10–26. https://doi.org/10.24425/jwld.2021.138156
  • 17. Dudiak N.V., Pichura V.I., Potravka L.A., Stratichuk N.V. 2019. Geomodelling of Destruction of Soils of Ukrainian Steppe Due to Water Erosion. Journal of Ecological Engineering, 20(8), 192–198.
  • 18. Dudiak N.V., Pichura V.I., Potravka L.A., Stroganov A. A. 2020. Spatial modeling of the effects of deflation destruction of the steppe soils of Ukraine. Journal of Ecological Engineering, 21(2), 166–177. https://doi.org/10.12911/22998993/116321
  • 19. Dudiak N.V., Potravka L.A., Stroganov A.A. 2019. Soil and Climatic Bonitation of Agricultural Lands of the Steppe Zone of Ukraine. Indian Journal of Ecology, 46(3), 534–540.
  • 20. Ermantraut E.R., Bobro M.A., Hoptsii T.I. etc. 2008. Methodology of scientific research in agronomy: study guide. Kharkiv National Agrarian University named after S.V. Dokuchaeva Kharkiv, 64. (in Ukrainian)
  • 21. Essaadia A., Abdellah A., Ahmed A., Abdelouahed F., Kamal E. 2022. The normalized difference vegetation index (NDVI) of the Zat valley, Marrakech: comparison and dynamics. Heliyon, 8(12), e12204. https://doi.org/10.1016/j.heliyon.2022.e12204
  • 22. Flagella Z., Rotunno T., Tarantano E., Caterina R.D., Caro A.D. 2002. Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. European Journal of Agronomy, 17(3), 221–230. https://doi.org/10.1016/S1161-0301(02)00012-6
  • 23. Giannini V., Mula L., Carta M., Patteri G., Roggero P.P. 2022. Interplay of irrigation strategies and sowing dates on sunflower yield in semi-arid Mediterranean areas. Agricultural Water Management, 260, 107287. https://doi.org/10.1016/j.agwat.2021.107287
  • 24. Howell T.A., Evett S.R., Tolk J.A., Copeland K.S., Marek Th.H. 2015. Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains. Agricultural Water Management, 162, 33–46. https://doi.org/10.1016/j.agwat.2015.08.008
  • 25. Ibrahim H.M. 2012. Response of Some Sunflower Hybrids to Different Levels. APCBEE Procedia, 4. 175–182. https://doi.org/10.1016/j.apcbee.2012.11.030
  • 26. Jan A.U., Hadi F., Ditta A., Suleman M., Ullah M. 2022. Zinc-induced anti-oxidative defense and osmotic adjustments to enhance drought stress tolerance in sunflower (Helianthus annuus L.). Environmental and Experimental Botany, 193, 104682. https://doi.org/10.1016/j.envexpbot.2021.104682
  • 27. Kamińska A., Grzywna A. 2014. Comparison of deterministic interpolation methods for the estimation of groundwater level. Journal of Ecological Engineering, 15(4), 55–60. https://doi.org/10.12911/22998993.1125458
  • 28. Kondhare K.R., Patil A.B., Giri A.P. 2021. Auxin: An emerging regulator of tuber and storage root development. Plant Science, 306, 110854. https://doi.org/10.1016/j.plantsci.2021.110854
  • 29. Kotova N., Makhortykh S. 2010. Human adaptation to past climate changes in the northern Pontic steppe. Quaternary International, 220(1–2), 88–94.
  • 30. Koutroubas S.D., Antoniadis V., Damalas C.A., Fotiadis S. 2020. Sunflower growth and yield response to sewage sludge application under contrasting water availability conditions. Industrial Crops and Products, 154, 112670. https://doi.org/10.1016/j.indcrop.2020.112670
  • 31. Kyrychenko V.V., Syvenko V.I., Maklyak K.M., Buryak Yu.I.,. Kolomatska V.P., Lebedenko E.O., Syvenko O.A., Ogurtsov Yu.E., Andrienko V.V., Satarov O.Z., Shepilov B.P., Svyatchenko S.I., Bragin O.M. 2014. Growing seeds of sunflower hybrids: Methodical recommendations. Kharkiv, 28. (in Ukrainian)
  • 32. Lisetskii F., Chepelev O. 2014. Quantitative substantiation of pedogenesis model key components. Advances in Environmental Biology, 8(4), 996–1000.
  • 33. Lisetskii F., Pichura V. 2016. Steppe Ecosystem Functioning of East European Plain under Age-Long Climatic Change Influence. Indian Journal of Science and Technology, 9(18), 1–9. https://doi.org/10.17485/ijst/2016/v9i18/93780
  • 34. Lisetskii F., Poletaev A., Zelenskaya E., Pichura V. 2019. Associated data on the physicochemical properties of pedosediments, climatic and dendrochronological indicators for palaeogeographic reconstructions. Data in Brief, 28, 104829. https://doi.org/10.1016/j.dib.2019.104829
  • 35. Loison R, Audebert A., Debaeke Ph., Hoogenboom G., Leroux L., Oumarou P.,Gérardeaux E. 2017. Designing cotton ideotypes for the future: Reducing risk of crop failure for low input rainfed conditions in Northern Cameroon. European Journal of Agronomy, 90, 162–173. https://doi.org/10.1016/j.eja.2017.08.003
  • 36. Mateo-Sanchis A., Piles M., Amorós-López J., Muñoz-Marí J., Adsuara J., Moreno-Martínez A., Camps-Valls G. 2021. Learning main drivers of crop progress and failure in Europe with interpretable machine learning. International Journal of Applied Earth Observation and Geoinformation, 104, 102574. https://doi.org/10.1016/j.jag.2021.102574
  • 37. Mu X., Chen Q., Wu Xi., Chen F., Yuan Li., Mi G. 2018. Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environmental and Experimental Botany, 150, 198–208. https://doi.org/10.1016/j.envexpbot.2018.03.012
  • 38. Oti J.O., Kabo-Bah A.T., Ofosu E. 2020. Hydrologic response to climate change in the Densu River Basin in Ghana. Heliyon, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04722
  • 39. Özşahin E. 2023. Climate change effect on soil erosion using different erosion models: A case study in the Naip Dam basin, Türkiye. Computers and Electronics in Agriculture, 207, 107711. https://doi.org/10.1016/j.compag.2023.107711
  • 40. Panfilova A., Mohylnytska A. 2019. The impact of nutrition optimization on crop yield of winter wheat varieties (Triticum aestivum L.) and modeling of regularities of its dependence on structure indicators. Agriculture & Forestry, 65(3), 157–171. https://doi.org/10.17707/AgricultForest.65.3.13
  • 41. Panfilova A. 2021. Influence of stubble biodestructor on soil microbiological activity and grain yield of winter wheat (Triticum aestivum L.). Notulae Scientia Biologicae, 13(4), 11035.https://doi.org/10.15835/nsb13411035
  • 42. Panfilova A., Gamayunova V., Potryvaieva N. 2021. The impact of nutrition optimization on crop yield and grain quality of spring barley varieties (Hordeum vulgare L.). Agraarteadus, 32(1), 111–116. https://dx.doi.org/10.15159/jas.21.18
  • 43. Papish I. 2001. Workshop on soil physics. Part 2. Soil hydrophysics. Lviv: LNU Publishing Center named after Ivan Franko, 36. (in Ukrainian)
  • 44. Pichura V., Potravka L., Domaratskiy E., Stratichuk N., Baysha K., Pichura I. 2023. Long-term Changes in the Stability of Agricultural Landscapes in the Areas of Irrigated Agriculture of the Ukraine Steppe Zone. Journal of Ecological Engineering, 24(3), 188–198. https://doi.org/10.12911/22998993/158553
  • 45. Pichura V., Potravka L., Dudiak N., Stroganov A., Dyudyaeva O. 2021. Spatial differentiation of regulatory monetary valuation of agricultural land in conditions of widespread irrigation of steppe soils. Journal of water and land development, 48(I–III), 182–196; https://doi.org/10.24425/jwld.2021.136161
  • 46. Pichura V., Potravka L., Dudiak N., Vdovenko N. 2021. Space-Time Modeling of Climate Change and Bioclimatic Potential of Steppe Soil. Indian Journal of Ecology, 48(3), 671–680.
  • 47. Pichura V., Potravka L., Stratichuk N., Drobitko A. 2023. Space-Time Modeling Steppe Soil Fertility Using Geo-Information Systems and Neuro-Technologies. Bulgarian journal of agricultural science, 29(1), 182–197.
  • 48. Pichura V., Potravka L., Vdovenko N., Biloshkurenko O., Stratichuk N., Baysha K. 2022. Changes in Climate and Bioclimatic Potential in the Steppe Zone of Ukraine. Journal of Ecological Engineering, 23(12), 189–202. https://doi.org/10.12911/22998993/154844
  • 49. Pichura V.I., Potravka L.A., Dudiak N.V., Skrypchuk P.M., Stratichuk N.V. 2019. Retrospective and Forecast of Heterochronal Climatic Fluctuations Within Territory of Dnieper Basin. Indian Journal of Ecology, 46(2), 402–407.
  • 50. Pichura V.I., Potravka L.A., Skrypchuk P.M., Stratichuk N.V. 2020. Anthropogenic and climatic causality of changes in the hydrological regime of the Dnieper river. Journal of Ecological Engineering, 21(4), 1–10. https://doi.org/10.12911/22998993/119521
  • 51. Rasmussen C., Tabor N. 2007. Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Science Society of America Journal, 71(6), 1719–1729.
  • 52. Small C.C., Degenhardt D. 2018. Plant growth regulators for enhancing revegetation success in reclamation: A review. Ecological Engineering, 118, 43–51. https://doi.org/10.1016/j.ecoleng.2018.04.010
  • 53. Török P., Neuffer B., Heilmeier H., Bernhardt K.-G., Wesche K. 2020. Climate, landscape history and management drive Eurasian steppe biodiversity. Flora, 271, 151685. https://doi.org/10.1016/j.flora.2020.151685
  • 54. Volobuev V.R. 1974. Introduction to the energetics of soil formation. Moscow: Nauka, 126. (in Russian)
  • 55.Wang Q.J., Shao Y., Song Y., Schepen A., Robertson D.E., Ryu D., Pappenbergerd F. 2019. An evaluation of ECMWF SEAS5 seasonal climate forecasts for Australia using a new forecast calibration algorithm. Environmental Modelling & Software, 122, 104550. https://doi.org/10.1016/j.envsoft.2019.104550
  • 56. Xie Y., Tang J., Gao Y., Gu Zh., Liu G., Ren X. 2023. Spatial distribution of soil erosion and its impacts on soil productivity in Songnen typical black soil region. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2023.01.002
  • 57. Zhang H., Huo S., Yeager K.M., Li C., Xi B., Zhang J.,, He Z., Ma C. 2019. Apparent relationships between anthropogenic factors and climate change indicators and POPs deposition in a lacustrine system. Journal of Environmental Sciences, 83, 174–182. https://doi.org/10.1016/j.jes.2019.03.024
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60404af0-5fc4-467a-9f06-a339ff07e78f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.