Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper brings to the attention of researchers the morphological changes of metal oxides, which appear as a result of the process of physical solar vapor deposition (SPVD) based on experiments carried out at the CNRS-PROMES laboratory, UPR 8521, belonging to the French National Centre for Scientific Research (CNRS). The SPVD process is an innovative tool who has been developed in 2 kW solar furnaces at Odeillo-Font Romeu, France, to synthesis pure and doped nanoparticles, such as: ZnO, CeO2, ZrO2, BiO2, SiO. A variety of metal oxides nanoparticles have been obtained by focusing solar energy on pellets of commercial powders through the controlled process of vaporization followed by condensation directed on a cooper tube or on nanoporous filter. After the micrograph analysis the change of shape and dimension can be observed depending on the type of oxide and the proces parameters. It is noticed the appearance of new morphologies, not found in other synthesis methods. The paper brings new information about morphological and dimensional changes after synthesis by physical process which can be essential for researchers, in the choice of methods for the elaboration of nanomaterials.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
535--540
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab.
Twórcy
autor
- Doctoral School Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, no. 313, Sector 6, Bucharest, Romania
autor
- Pitești University Centre, Faculty of Electronics, Communication and Computers, National University of Science and Technology Politehnica Bucharest, Targudin Vale, no.1, Pitesti, Romania
autor
- Pitești University Centre, Faculty of Electronics, Communication and Computers, National University of Science and Technology Politehnica Bucharest, Targudin Vale, no.1, Pitesti, Romania
autor
- Pitești University Centre, Faculty of Mechanics and Technology, National University of Science and Technology Politehnica Bucharest, Targudin Vale, no.1, Pitesti, Romania
autor
- Pitești University Centre, Faculty of Mechanics and Technology
Bibliografia
- [1] Nanomaterials Market Share, Size, Trends, Industry Analysis Report, By Application (Aerospace, Automotive, Medical, Energy & Power, Electronics, Paints & Coatings, Others), By Product; By Region; Segment Forecast, 2022-2030, Report ID: PM2239, (2021).
- [2] I.V. Yentekakis, D.P Gournis, M.A. Karakassides, Nanomaterials in Catalysis Applications. Catalysts 13, 627, (2023). DOI: https://doi.org/10.3390/catal13030627
- [3] D. Lun, K. Xu, Recent Progress In Gas Sensor Based on Nanomaterials. Micromachines (Basel). Jun 10, 13 (6), 919 (2022). DOI: https://doi.org/10.3390/mi13060919. PMID: 35744533; PMCID: PMC9229305
- [4] S.C. Thomas Harshita, P.K. Mishra, S. Talegaonkar, Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Curr Pharm Des. 21 (42), 6165-88 (2015). DOI: https://doi.org/10.2174/1381612821666151027153246. PMID: 26503144
- [5] P. Daisy, K. Saipriya, Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International Journal of Nanomedicine 7, 1189-1202 (2012). DOI: https://doi.org/10.1142/S0218625X19502196
- [6] M.P. Vinardell, M. Mitjans, Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials 5, 1004-1021, (2015).
- [7] M.S Chavali, M.P. Nikolova, Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1, 607 (2019). DOI: https://doi.org/10.1007/s42452-019-0592-3
- [8] A.M. Negrescu, M.S. Killian, S.N.V. Raghu, P. Schmuki, A. Mazare, A. Cimpean, Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J. Funct. Biomater. 13, 274 (2022). DOI: https://doi.org/10.3390/ jfb13040274
- [9] N. Kumar, M. Kalyan Phani, P. Chamoli, M.K. Manoj, A. Sharma, W. Ahmed, A. Kumar Srivastava, S. Kumar, Emerging Nanotechnologies for Renewable Energy, Chapter 10 - Nanomaterials for advanced photovoltaic cells, Micro and Nano Technologies 239-258 (2021). DOI: https://doi.org/10.1016/B978-0-12-821346-9.00006-7
- [10] S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 9 (6), 385-406 (2014). PMID: 26339255; PMCID: PMC4326978.
- [11] A. Ali, H. Zafar, M. Zia, Ul Haq I, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49-67 (2016). DOI: https://doi.org/10.2147/NSA.S99986
- [12] A.S.H. Makhlouf, Current and advanced coating technologies for industrial applications in Nanocoatings and Ultra-Thin Films, 2011, A volume in Woodhead Publishing Series in Metals and Surface Engineering, book.
- [13] N. Jain, A. Bhargava, S. Majumdar, J.C. Tarafdar, J. Panwar, Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale 3 (2), 635-41 (2010). DOI: https://doi.org/10.1039/c0nr00656d
- [14] G. Calin, L. Sachelarie, N. Olar, Influence of Synthesis Conditions on the Chemical Structure and Composition of ZnO Nanoparticles Composite Systems/Polymer Fibers. Arch. Metall. Mater. 67, 2, 601-606 (2022). DOI: https://doi.org/10.24425/amm.2022.137796
- [15] M. Gizowska, I. Kobus, K. Perkowski, M. Piątek, G. Konopka, I. Witosławska, M. Osuchowski, Size and morphology of yttria nanopowders obtained by solution combustion synthesis. Arch. Metall. Mater. 63, 2, 743-748 (2018). DOI: https://doi.org/10.24425/122400
- [16] L.M. Cursaru, A.G. Plaiasu, C.M. Ducu, R.M. Piticescu, I.A. Tudor, Carbon Nanotube/Polyaniline Composite Films Prepared by Hydrothermal-Electrochemical Method for Biosensor Applications, 2018 International Semiconductor Conference (CAS), 249-252.
- [17] A.G. Plăiașu, M.C. Ducu, S.G. Moga, A.D. Negrea, E.M. Modan, Nanostructured transition metal oxides obtained by SPVD, Manufacturing Rev., 7, 12 special issue - The emerging materials and processing technologies, (2020). DOI: https://doi.org/10.1051/mfreview/2020009
- [18] A.G. Plaiasu, C.M. Topala, A. Dinu, M. Abrudeanu, C. Sutan, Copper Oxides Nanopowders Synthesis by SPVD and Characterization. Revista de Chimie 66 (10), 1636-1638 (2015).
- [19] M. Stanciulescu, M. Abrudeanu, C. Ducu, A.G. Plaiasu, Chemical Redistribution and Microstructural Evolution of ODS Fe-Cr Powders During Mechanical Alloying. Revista de Chimie 69 (2), 495-498 (2018).
- [20] L. D’Avico, R. Beltrami, N. Lecis, S.P. Trasatti, Corrosion Behavior and Surface Properties of PVD Coatings for Mold Technology Applications. Coatings 9, 7, (2019). DOI: https://doi.org/10.3390/coatings901000
- [21] Nanoparticle Technology Handbook, Basic Properties and Measuring Methods of Nanoparticles, 3-47, (2018), https://www.sciencedirect.com/science/article/pii/B9780444641106000019
- [22] John G. Walker, Nam Trung Huynh, Rui Chen, Image vector histogram approach to nanoparticle sizing, Appl. Opt. 51, 651-658, (2012).
- [23] J. Gabriela Calvillo-Vázquez, Hugo A. Guillén-Ramírez, Melis, sa DiazDuarte-Rodríguez, Angel Licea-Claverie, Eugenio R. Méndez, Particle size distribution from extinction and absorption data of metallic nanoparticles, Aappl. Opt. 58 (36), 9955-9966 (2019).
- [24] Chapter 1 - Basic Properties and Measuring Methods of Nanoparticles, Editor(s): Makio Naito, Toyokazu Yokoyama, Kouhei Hosokawa, Kiyoshi Nogi, Nanoparticle Technology Handbook (Third Edition), Elsevier 3-47, (2018). DOI: https://doi.org/10.1016/B978-0-444-64110-6.00001-9; ISBN 9780444641106
Uwagi
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823802. We thank the CNRS-PROMES laboratory, UPR 8521, belonging to the French National Centre for Scientific Research (CNRS) for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-603856bb-a5f2-46f0-8c32-3358cfe9da93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.