PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental and recombinant microorganisms for biopharmaceuticals production

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current, very fast development of genetic engineering and protein engineering (main segments of modern biotechnology) is a good way for commercially production of proteins, which benefit biopharmaceutical, the enzyme and agricultural industries. These products augment the fields of medicine, diagnostics, food, nutrition, detergents, textiles, leather, paper, pulp, polymers and plastics. Proteins with biopharmaceutical application are mainly clinical reagents, vaccines and drugs. During the last decade, the pharmaceutical biotechnology represents the fastest growing segment in the biotechnology sector. Production of recombinant proteins for use as pharmaceuticals, is a multi-billion dollar industry. One third of the biopharmaceuticals has come from microorganisms, such as Escherichia coli and yeast. The selection of expression systems depends on the size and biochemical status of proteins. Large proteins and proteins that require glycosylation are usually expressed in a mammalian cells, fungi or the baculovirus system. Smaller proteins are produced by prokaryotic cells. There are some very useful advantages for prokaryotic recombinant expression systems: it is easy of culture, very rapid cell growth with possibility of IPTG expression induction and quite simple product purification. On the other hand, for very large proteins, for S-S rich proteins and proteins which require post-translational modifications, bacteria, usually E. coli strains are not robust system. Better are yeasts with very popular species Saccharomyces cerevisiae and Pichia pastoris. This article presents the current application of microbes as production platforms for recombinant proteins and its genetic engineering for the use as biopharmaceuticals.
Rocznik
Strony
15--21
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering, Bialystok University of Technology
Bibliografia
  • Amano K., Chiba Y., Kasahara Y., Kato Y., Kaneko M.K.,Kuno A., Ito H., Kobayashi K., Hirabayashi J., and Jigami Y. et al. (2008). Engineering of mucin-type human glycoproteins in yeast cells. Proc. Natl. Acad. Sci. U.S.A., 105: 3232-3237.
  • Andrews B., Adari H., Hannig G., Lahue E., Gosselin M., Martin S., Ahmed A., Ford P.J., Hayman E.G., Makrides S.C. (1996). A tightly regulated high level expression vector that utilizes a thermosensitive lac repressor: production of the human T cell receptor V beta 5.3in Escherichia coli. Gene 182(1-2):101-109.
  • Anné J., Maldonado B., Impe J. V., Mellaert L. V., Bernaerts K. (2012). Recombinant protein production and streptomycetes. J Biotechnol. 158: 159-167.
  • Barnard G. C., Henderson G. E., Srinivasan S., Gerngross T.U. (2004). High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expr. Purif., 38: 264-271.
  • Chen C., Snedecor B., Nishihara J.C., Joly J.C., McFarland N., Andersen D.C., Battersby J.E., Champion K.M. (2004). High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol. Bioeng. 85(5):463-474.
  • Chigira Y., Oka T., Okajima T., Jigami Y. (2008). Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology, 18: 303-314.
  • Choi J.H., Lee S.Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64(5):625-635.
  • Choi J.H., Keum K.C., Lee S.Y. (2006). Production of recombinant proteins by high cell density culture of Escherichia coli. Chem. Eng. Sci. 61(3):876-885.
  • Dammeyer T., Steinwand M., Krüger S.C., Dübel S., Hust M., Timmis K.N. (2011). Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonasputida strain KT2440 cell factory. Microb. Cell Fact. 10:11.
  • De Pourcq K., De Schutter K., Callewaert N. (2010). Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl. Microbiol. Biotechnol., 87: 1617-1631.
  • Demain A.L., Vaishnav P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnol. Advances 27: 297-306.
  • Eiberle M.K., Jungbauer A. (2010). Technical refolding of proteins: do we have freedom to operate? Biotechnol. J5(6): 547-559.
  • Ferrer-Miralles N., Domingo-Espín J., Corchero J., Vázquez E., Villaverde A. (2009). Microbial factories for recombinant pharmaceuticals. Microb. Cell Fact. 8(1):17.
  • Furman T.C., Epp J., Hsiung H.M., Hoskins J., Long G.L., Mendelsohn L.G., Schoner B., Smith D.P., Smith M.C. (1987). Recombinant human insulin-like growth factor-Iexpressed in Escherichia coli. Bio-Technology 5(10):1047-1051.
  • Gellissen G., Melber K., Janowicz Z.A., Dahlems U.M., Weydemann U., Piontek M., Strasser A.W., Hollenberg C.P. (1992). Heterologous protein production in yeast. Antonie Van Leeuwenhoek 62:79-93.
  • Gerngross T.U. (2004). Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat. Biotechnol., 22: 1409–1414.
  • Graumann K., Premstaller A. (2006). Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol. J 1(2):164-186.
  • Hansson M., Samuelson P., Nguyen T.N., Stahl S. (2002). General expression vectors for Staphylococcus carnosus enabled efficient production of the outer membrane protein A of Klebsiella pneumonia. FEMS Microbiol. Lett., 210: 263-270.
  • Hou J., Tyo K., Liu Z., Petranovic D., Nielsen J. (2012). Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metab. Eng. 2012.
  • Huang J.C., Lin H., Yang X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind. Microbiol. Biotechnol. 39: 383-399.
  • Huang Y.S., Chen Z., Chen Y.Q., Ma G.C., Shan J.F., Liu W., Zhou L.F. (2008). Preparation and characterization of a novel exendin-4 human serum albumin fusion proteinexpressed in Pichia pastoris. J Pept. Sci. 14(5):588-595.
  • Jana S., Deb J.K. (2005). Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67(3):289-298.
  • Jungbauer A. (2012). Bioprocess engineering of recombinant proteins: From μl to ml scale and from batch to continous. New Biotechnol. 29: S.240-S.241.
  • Jungbauer A., Kaar W. (2007). Current status of technical protein refolding. J Biotechnol. 128(3): 587-596.
  • Jungbauer A., Kaar W., Schelgl R. (2004). Folding and refolding of proteins in chromatographic beds. Curr. Opin. Biotechnol. 15(5): 487-494.
  • Kamionka M. (2011). Engineering of therapeutic proteins production in Escherichia coli. Curr. Pharm. Biotechnol. 12(2):268-274.
  • Karg S.R., Kallio P.T. (2009). The production of biopharmaceuticals in plant systems. Biotechnol. Advances 27: 879-894.
  • Lawrence S. (2007). Billion dollar babies – biotech drugs as blockbusters. Nat. Biotechnol. 25: 380-382.
  • Leader B., Baca Q.J., Golan D.E. (2008). Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7(1):21-39.
  • Lilie H., Schwarz E. and R. Rudolph. 1998. Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 5:497-501.
  • Lowe J.A., Jones P. (2007). Biopharmaceuticals and the future of the pharmaceutical industry. Curr. Opin. Drug Discov. Devel. 10:513-514.
  • Luo Y., Fan D.D., Ma X.X., Wang D. ., Mi Y., Hua X. F., Li W.H. (2005). Process control for production of human-like collagen in fed-batch culture of Escherichia coli BL 21.Chin. J Chem. Eng. 13(2):276-279.
  • Martinez J.L., Liu L., Petranovic D., Nielsen J. (2012). Pharmaceutical protein production by yeast: towards production of human blood proteins by microbialfermentation. Curr. Opin. Biotechnol. 21: 1-7.
  • Ni Y., Chen R. (2009). Extracellular recombinant protein production from Escherichia coli. Biotechnol. Lett. 31(11):1661-1670.
  • Nielsen J. (2013). Production of biopharmaceutical proteins by yeast. Bioengineered 4(4): 1-5.
  • Panda A.K. (2003). Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv. Biochem. Eng. Biotechnol., 85: 43-93.
  • Pandhal J., Ow S.Y., Noirel J., Wright P.C. (2010). Improving N-glycosylation efficiency in Escherichia coli using shotgun proteomics, metabolic network analysis, and selective reaction monitoring. Biotechnol. Bioeng. 108:902-912.
  • Porro D., Gasser B., Fossati T., Maurer M., Branduardi P., Sauer M., Mattanovich D. (2011). Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems? Appl. Microbiol. Biotechnol., 89: 939-948.
  • Sahdev S., Khattar S.K., Saini K.S. (2008). Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol. Cell Biochem. 307(1-2):249-264.
  • Schumann W., Ferreira L.C.S. (2004). Production of recombinant proteins in Escherichia coli. Genet. Mol. Biol. 27:442-453.
  • Squires C.H., Lucy P. (2008). Vendor voice: a new paradigm for bacterial strain engineering. BioProcess. Int., 6(4): 22-27.
  • Staub A., Guillarme D., Schappler J., Veuthey J.L., Rudaz S. (2011). Intact protein analysis in the biopharmaceutical field. J Pharmaceut. Biomed. Analysis 55: 810-822.
  • Swiech K., Picanco-Castro V., Covas D.T. (2012). Human cells: New platform for recombinant therapeutic protein production. Protein Express. Purificat. 84: 147-153.
  • Terpe K. (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol., 72: 211-222.
  • Tripathi N.K., Jana S.K., Rao A.M. (2009). PVL: high yield production of heterologous proteins with Escherichia coli. Defence Sci. J, 59: 137-146.
  • Ventura S., Villaverde A. (2006). Protein quality in bacterial inclusion bodies. Trends Biotechnol. 24(4):179-185.
  • Waegeman H., Soetaert W. (2011). Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J Indust. Microbiol. Biotechnol. 38(12): 1891-1910.
  • Walsh G., Jefferis R. (2006). Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol., 24:1241-1252.
  • Westers L., Westers H., Quax W.J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310.
  • Yoon S.H., Kim S.K., Kim J.F. (2010). Secretory production of recombinant proteins in Escherichia coli. Recent Pat. Biotechnol. 4(1):23-29.
  • Zhu J. (2012). Mammalian cell protein expression for biopharmaceutical production. Biotechnol. Advances 30: 1158-1170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60354994-961f-46ab-97ab-f22f0c7105fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.