PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the stochastically defective plates with strength anisotropy limit state

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The algorithm for finding the probability of failure of stochastically defective plates in a flat stress field based on a certain idea about structural rearrangement due to technological deformation processing (extraction) is considered. The plate is isotropic before technological processing, in which defects-cracks, which do not interact with each other, are evenly distributed. Cracks are characterized by the length and angle of orientation relative to the extraction direction, which are statistically independent random variables. The relationship for the failure loading integral probability distribution function of plates with extraction was obtained. The probability of plate failure with strength anisotropy was investigated.
Rocznik
Strony
42--55
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, Lviv Polytechnic National University Lviv, Ukraine
Bibliografia
  • 1. Sabirov, I., M., Perez-Prado, M., Molina-Aldareguia, J., Semenova, I., Salimgareeva, G., & Valiev, R. (2011). Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route. Scripta Materialia, 64(1), 69-72. DOI: 10.1016/j.scriptamat.2010.09.006.
  • 2. Chen, T., Lu, H.Z., Lin, J.A., Cai, W.S., Zhu, D.Z., & Yang. C. (2023). Tailoring microstructure and mechanical properties of CP-Ti through combined treatment of pressure and pulsed electric current. Journal of Materials Research and Technology, 25, 3496-3506. DOI: 10.1016/j.jmrt.2023.06.147.
  • 3. Bažant, Z., & Chen, E.P. (1997). Scaling of structural failure. Applied Mechanics Reviews, 50(10), 593-627. DOI: 10.1115/1.3101672.
  • 4. Chowdhury, M.S., Song, C., & Gao, W. (2014). Probabilistic fracture mechanics with uncertainty in crack size and orientation using the scaled boundary finite element method. Composite Structures, 137, 93-103. DOI: 10.1016/j.compstruc.2013.03.002.
  • 5. Lei, W.S. (2016). Fracture probability of a randomly oriented microcrack under multi-axial loading for the normal tensile stress criterion. Theoretical and Applied Fracture Mechanics, 85(B), 164-172. DOI: 10.1016/j.tafmec.2016.01.004.
  • 6. Choi, W., Yoon, S., & Lee L.J. (2017). Crack simulation and probability analysis using irregular truss structure modeling equivalent to a continuum structure. International Journal of Agricultural and Biological Engineering, 10(1), 234-247. DOI: 10.3965/j.ijabe.20171001.2024.
  • 7. Gao, X., Koval, G., & Chazallon, C. (2017). Energetical formulation of size effect law for quasi-brittle fracture. Engineering Fracture Mechanics, 175(15), 279-292. DOI: 10.1016/j.engfracmech.2017.02.001.
  • 8. Lei, W.-S. (2018). A generalized weakest-link model for size effect on strength of quasi-brittle materials. Journal of Materials Science, 53(2), 1227-1245.
  • 9. Rakesh, P., More, A., Kumar, M., & Muthu, N. (2022). Probabilistic failure prediction in a double composite cantilever beam with single and double source uncertainty. Composite Structures, 279, 114870. DOI: 10.1016/j. compstruct.2021.114870.
  • 10. Kumar, R., Madsen, B., Lilholt, H., & Mikkelsen, L. (2022). Influence of test specimen geometry on probability of failure of composites based on Weibull weakest link theory. Materials, 15(11), 3911. DOI: 10.3390/ma15113911.
  • 11. Wan, L., Ullah, Z., Yang, D., & Falzon, B.G. (2023). Probability embedded failure prediction of unidirectional composites under biaxial loadings combining machine learning and micromechanical modeling. Composite Structures, 312, 116837. DOI: 10.1016/j.compstruct.2023.
  • 12. Pagnoncelli, A.P., Paolino D.S., Peroni, L., & Tridello, A. (2024). Innovative tensile test for brittle materials: Validation on graphite R4550. International Journal of Mechanical Sciences, 261, 108679. DOI: 10.1016/j.ijmecsci.2023.108679.
  • 13. Alabdullah, M., & Ghoniem N.M. (2024). A probabilistic-phase field model for the fracture of brittle materials. Modelling and Simulation in Materials Science and Engineering, 32(1), 015002. DOI: 10.1088/1361-651X/ad09ea.
  • 14. Vera, J., Caballero Garcia, L.F., Taboada Neira, M., & Valverde Flores J.F. (2024). Probability of defects detection in welded joints using the magnetic particle method. Archives of Metallurgy and Materials, 69(2), 607-612. DOI: 10.24425/amm.2024.149789.
  • 15. Vitvits’kii, P., & Popina, S. (1980). Strength and Criteria of Brittle Fracture of Stochastically Defective Bodies. Kyiv, 186.
  • 16. Hahn, G., & Shapiro, S. (1994). Statistical Models in Engineering, 376. ISBN-13: 978047104 0651.
  • 17. Vitvits’kii, P., & Kvit, R. (1992). Probabilistic description of experimental statistical strength characteristics. Soviet Materials Science, 28(1), 83-86. DOI: 10.1007/BF00723637.
  • 18. Li, X., Konietzky, H., Li, X., & Wang, Y. (2019). Failure pattern of brittle rock governed by initial microcrack characteristics. Acta Geotechnica, 14(5), 1437-1457. DOI: 10.1007/s11440-018-0743-5.
  • 19. Romanovsky, V. (1979). Reference Book on Cold Forming. Mechanical Engineering.
  • 20. Korolyuk, V., Skorokhod, A., Portenko, N., & Turbin, A. (1985). A Manual on Probability Theory and Mathematical Statistics. Nauka.
  • 21. Kvit, R. (2023). Development of the statistical model failure of orthotropic composite materials. Journal of Applied Mathematics and Computational Mechanics, 22(2), 26-35. DOI: 10.17512/jamcm.2023.2.03.
  • 22. Kvit, R. (2022). Investigation of probabilistic aspects reliability of isotropic bodies with internal defects. Journal of Applied Mathematics and Computational Mechanics, 21(3), 73-84. DOI:10.17512/jamcm.2022.3.06.
  • 23. Mossakovskii, V., & Rybka, M. (1965). An attempt to construct a theory of fracture for brittle materials, based on Griffith’s criterion. Journal of Applied Mathematics and Mechanics, 29(2), 326-332. DOI: 10.1016/0021-8928(65)90034-1.
  • 24. Pukach, P., Kvit, R., Salo, T., & Vovk, M. (2023). A probable approach to reliability assessment of reinforced plates. Applied System Innovation, 6(4), 73. DOI: 10.3390/asi6040073.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-603236f9-5af7-4eea-862d-8f60d2a149ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.