Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Copper-to-copper welding presents several complex technical challenges, primarily due to the unique properties of copper as a material. One of the main issues is copper's high thermal conductivity. The purpose of this study is to determine the mechanical properties, such as tensile strength, hardness, and thermal conductivity, of welded metal products produced using the Gas Tungsten Arc Welding (GTAW) Technology. The filler material used is ERCuNi 90/10 rods. The welding method involves variations in welding heat input, specifically 1.09 kJ/mm, 1.13 kJ/mm, and 1.2 kJ/mm. The results of the study show that welding heat input affects the mechanical properties and thermal conductivity of copper. The highest tensile strength of 180 MPa at 1.2 kJ/mm is due to the higher heat input, which improves weld penetration and strengthens the metallurgical bond, enhancing the load-bearing capacity of the welded joint. The highest hardness of 132.12 HV or 1295 MPa is found in the weld metal (WM) due to microstructural transformation during solidification. The use of ERCuNi 90/10 filler contributes to the formation of a harder dendritic structure compared to the heat-affected zone (HAZ) and base metal. Meanwhile, the highest thermal conductivity of 206.72 W/mK occurs at 1.09 kJ/mm because the lower heat input reduces the mixing of filler metal with pure copper, preserving copper’s thermal properties better than at higher heat input. At higher heat input, increased nickel dilution from the filler reduces thermal conductivity, as nickel has lower thermal conductivity than pure copper.
Wydawca
Rocznik
Tom
Strony
316--329
Opis fizyczny
Bibliogr. 26 poz., fig., tab.
Twórcy
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe 24301, Indonesia
autor
- Research Center for Nuclear Reactor Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Kawasan Sains Terpadu B.J. Habibie Serpong, Tangerang Selatan, 15314, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Medan, Kota Medan, Sumatera Utara, 20155, Indonesia
autor
- Department of Mechanical Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
Bibliografia
- 1. Kareem SSA Al, Mahdi BL, Hussein HK. Impact of TIG Welding Parameters on the Mechanical Properties of 6061-T6 Aluminum Alloy Joints. Adv Sci Technol Res J. 2023;17(5). 10.12913/22998624/171489.
- 2. Li Y, Chen S, Huang J, Yan Y, Zeng Z. Experimental and simulation studies on cold welding sealing process of heat pipes. Chinese J Mech Eng. 2017;30(2):332–43. 10.1007/s10033-017-0070-z.
- 3. Xu X, Liang Q, Peng C. Failure probability evaluation for a weld of the heat pipe in the MegaPower heat pipe cooled reactor. Ann Nucl Energy. 2022;177:109324. 10.1016/j.anucene.2022.109324.
- 4. Hayat MA, Ali HM, Janjua MM, Pao W, Li C, Alizadeh M. Phase change material/heat pipe and Copper foam-based heat sinks for thermal management of electronic systems. J Energy Storage. 2020;32:101971. 10.1016/j.est.2020.101971.
- 5. Babu NN, Kamath HC. Materials used in heat pipe. Mater Today Proc. 2015;2(4–5):1469–78. 10.1016/j.matpr.2015.07.072.
- 6. Shen JJ, Liu HJ, Cui F. Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater Des. 2010;31(8):3937–42. 10.1016/j.matdes.2010.03.027.
- 7. Singla Y. Mechanical Properties Study of Copper/Stainless Steel Dissimilar Weld Joints. Mod Approaches Mater Sci. 2020;2(4):271–3. 10.32474/MAMS.2020.02.000144.
- 8. Lei YC, Yu WX, Li CH, CHEnG X nong. Simulation on temperature field of TIG welding of copper without preheating. Trans Nonferrous Met Soc China. 2006;16(4):838–42. 10.1016/S1003-6326(06)60336-1.
- 9. Jin LZ, Sandström R. Numerical simulation of residual stresses for friction stir welds in copper canisters. J Manuf Process. 2012;14(1):71–81. 10.1016/j.jmapro.2011.10.001.
- 10. Periyasamy PS, Sivalingam P, Vellingiri VP, Maruthachalam S, Balakrishnapillai V. A review of traditional and modern welding techniques for copper. Weld Int. 2024;38(10):673–85.
- 11. Kumar K, Kumar CS, Masanta M, Pradhan S. A review on TIG welding technology variants and its effect on weld geometry. Mater Today Proc. 2022;50:999–1004. 10.1080/09507116.2024.2413386.
- 12. Ikpe AE, Ikechukwu O, Ikpe E. Effects of arc voltage and welding current on the arc length of tungsten inert gas welding (TIG). 2017.
- 13. Jeyaprakash N, Haile A, Arunprasath M. The parameters and equipments used in TIG welding: A review. Int J Eng Sci. 2015;4(2):11–20.
- 14. Cheng Z, Liu H, Huang J, Ye Z, Yang J, Chen S. MIG-TIG double-sided arc welding of copper-stainless steel using different filler metals. J Manuf Process. 2020;55:208–19. 10.1016/j.jmapro.2020.04.013.
- 15. Mahdavi M, Tiari S, De Schampheleire S, Qiu S. Experimental study of the thermal characteristics of a heat pipe. Exp Therm Fluid Sci. 2018;93:292–304. 10.1016/j.expthermflusci.2018.01.003.
- 16. Bensaid N, Benlamnouar MF, Laksir YLD, Saadi T, Badji R. Optimization of tungsten inert gas welding process parameters for joining austenitic stainless steel and copper using the Taguchi method. Adv Sci Technol Res J. 2025;19(1):209–19. 10.12913/22998624/195449.
- 17. Chang CC, Wu LH, Shueh C, Chan CK, Shen IC, Kuan CK. Evaluation of microstructure and mechanical properties of dissimilar welding of copper alloy and stainless steel. Int J Adv Manuf Technol. 2017;91:2217–24. 10.1007/s00170-016-9956-7.
- 18. Ramachandran S, Lakshminarayanan AK. An insight into microstructural heterogeneities formation between weld subregions of laser welded copper to stainless steel joints. Trans Nonferrous Met Soc China. 2020;30(3):727–45. 10.1016/S1003-6326(20)65249-9.
- 19. Antony K, Rakeshnath TR. Dissimilar laser welding of commercially pure copper and stainless steel 316L. Mater Today Proc. 2020;26:369–72. 10.1016/j.matpr.2019.12.043.
- 20. Bayat Tork H, Malekan M. Investigating the effect of GTAW parameters on the porosity formation of C70600 copper-nickel alloy. Can Metall Q. 2023;62(1):180–9. 10.1080/00084433.2022.2058150.
- 21. Sekyi-Ansah J, Dadadzogbor I, Eduku S, Atarah JJA, Puoza JC, Morro A. Investigations of weldment joints of exhaust pipes using non-destructive testing (NDT). Int J Sci Res Sci Technol. 2023;146–55. 10.32628/IJSRST229664.
- 22. ASTM. E8/E8M. Standart Test Methods for Tension Testing of Metallic Material. West Conshohocken, United States: American Society for Testing Methods; 2009.
- 23. Jofrishal J, Adlim M, Yusibani E, Akhyar A, Rahmayani RFI, Fajri R. Preparation and characterization of indoor heat blockage panel composites made of polyurethane-hybrid-foam-concrete and rice-husk-ash. Heliyon. 2023;9(8). 10.1016/j.heliyon.2023.e18925.
- 24. Moharana BR, Sahoo SK, Biswal DK, Muduli K. Influence of fusion welding processes on microstructure and mechanical properties of dissimilar metal (AISI 304 SS-Copper) weldment. Mater Today Proc. 2023. 10.1016/j.matpr.2023.10.135.
- 25. Wang J, Lu M xu, Zhang L, Chang W, Xu L ning, Hu L hua. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel. Int J Miner Metall Mater. 2012;19:518–24. 10.1007/s12613-012-0589-z.
- 26. S. Kumar and A. S. Shahi. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater. Des. 2011;32(6):3617–3623. 10.1016/j.matdes.2011.02.017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-602f31fd-c420-40ce-95b3-cfdba7200c5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.