Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, batch fermentation of glucose to ethanol by Saccharomyces cerevisiae (ATCC 7754) was carried out using 2.5 dm3 BioFlo®115 bioreactor. The main objective of this study was to investigate the kinetics of ethanol fermentation by means of the non-structured model. The fermentation process was carried out for 72 h. Samples were collected every 4 h and then yeast growth concentration of ethanol and glucose were measured. The mathematical model was composed of three equations, which represented the changes of biomass, substrate and ethanol concentrations. The mathematical model of bioprocess was solved by means of Matlab/SimulinkTM environment. The obtained results from the proposed model showed good agreement with the experimental data, thus it was concluded that this model can be used for the mathematical modeling of ethanol production.
Czasopismo
Rocznik
Tom
Strony
281–--291
Opis fizyczny
Bibliogr. 19 poz., tab., rys.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Al-Qodah Z., Lafi W., 2001. Modeling of antibiotics production in magneto three-phase airlift fermenter. Biochem. Eng. J., 7, 7–16. DOI: 10.1016/S1369-703X(00)00095-4.
- 2. de Andreas-Toro B., Girón-Sierra J.M., López-Orozco J.A., Fernandez-Conde C., Peinado J.M., Garcia-Ochoa F., 1998. A kinetic model for beer production under industrial operational conditions. Math. Comput. Simul., 48, 65–74. DOI: 10.1016/S0378-4754(98)00147-5.
- 3. Bai F.W., Anderson W.A., Moo-Young M., 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv., 26, 89–105. DOI: 10.1016/j.biotechadv.2007.09.002.
- 4. Cardona C., Sanchez Ó.J., 2007. Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol., 98, 2415–2457. DOI: 10.1016/j.biortech.2007.01.002.
- 5. Dodić J.M., Vucurović D.G., Dodić S.N., Grahovac J. A., Popov S.D., Nedeljković N.M., 2012. Kinetic modelling of batch ethanol production from sugar beet raw juice. Appl. Energy, 99, 192–197. DOI: 10.1016/j.apenergy.2012. 05.016.
- 6. Fan S., Chen S., Tang X., Xiao Z., Deng Q., Yao P., Sun Z., Zhang Y., Chen C., 2015. Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae. Bioresour. Technol., 177, 169–175. DOI: 10.1016/j.biortech.2014.11.076.
- 7. Germec M., Turhan I., Karhan M., Demirci A., 2015. Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel, 161, 304–311. DOI: 10.1016/j.fuel. 2015.08.060.
- 8. Imamoglu E., Sukan F.V., 2013. Scale-up and kinetic modeling for bioethanol production. Bioresour. Technol., 144, 311–320. DOI: 10.1016/j.biortech.2013.06.118.
- 9. Krzystek L., 2010. Stechiometria i kinetyka bioprocesów. Wydawnictwo Politechniki Łódzkiej, Łódź. Available at: https://wydawnictwo.p.lodz.pl/katalog/stechiometria-i-kinetyka-bioprocesow.
- 10. Lee Y.-G., Jin Y.-S., Cha Y.-L., Seo J.-H., 2017. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour. Technol., 228, 355–361. DOI: 10.1016/j.biortech.2016.12.042.
- 11. Liu T., Huang S., Geng A., 2018. Recombinant diploid Saccharomyces cerevisiae strain development for rapid glucose and xylose co-fermentation. Fermentation, 4, 59. DOI: 10.3390/fermentation4030059.
- 12. Muruaga M.L., Carvalho K.G., Dominguez J.M., de Souza Oliveira R.P., Perotti N., 2016. Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: Studies of scale up in bioreactor. Renewable Energy, 85, 649–656. DOI: 10.1016/j.renene.2015.07.008.
- 13. Nikolić S., Lazić V., Veljović D., Mojović L., 2017. Production of bioethanol from pre-treated cotton fabrics and waste cotton materials. Carbohydr. Polym., 164, 136–144. DOI: 10.1016/j.carbpol.2017.01.090.
- 14. Panda T., 2011. Bioreactors analysis and design. Tata McGraw Hill Education Private Limited, New Delhi.
- 15. Phisalaphong M., Srirattana N., Tanthapanichakoon W., 2006. Mathematical modeling to investigate temperature effectonkineticparametersofethanolfermentation.Biochem.Eng.J.,28,36–43.DOI:10.1016/j.bej.2005.08.039.
- 16. Rakoczy R., Konopacki M., Fijałkowski K., 2016. The influence of a ferrofluid in the presence of an external rotating magnetic field on the growth rate and cell metabolic activity of a wine yeast strain. Biochem. Eng. J., 109 43–50. DOI: 10.1016/j.bej.2016.01.002.
- 17. Srimachai T., Nuithitikul K., O-thong S., Kongjan P., Panpong K., 2015. Optimization and kinetic modeling of ethanol production from oil palm frond juice in batch fermentation. Energy Procedia, 79, 111–118. DOI: 10.1016/ j.egypro.2015.11.490.
- 18. Staniszewski M., Kujawski W., Lewandowska M., 2007. Ethanol production from whey in bioreactor with coimmobilized enzyme and yeast cells followed by pervaporative recovery of product – Kinetic model prediction. J. Food Eng., 82, 618–625. DOI: 10.1016/j.jfoodeng.2007.03.031.
- 19. Wachenheim D.E., Patterson J.A., Ladish M.R., 2003. Analysis of the logistic function model: derivation and applications specific to batch cultures microorganisms. Bioresour. Technol. 86, 157–164. DOI: 10.1016/S09608524(02)00149-9.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-602ddc87-5a45-431c-8e6c-817bed6707cd