PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of mathematical models for the analysis of thermal phenomena in the welding process using abaqus software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical solutions in the field of modelling of the welding process constitute significant support for the production process and are one of the most difficult to perform in terms of the complexity of physical phenomena in the welding process. This is especially true when commercial software such as Abaqus, Ansys, etc. is used in the analysis, where welding conditions are not directly reflected in the modules of the software. This work is focused on the development of mathematical models of a moveable heating source taking into account various welding techniques. The simulations are carried out in Abaqus software, which, in its basic form, does not allow simulations of welding process. The presented work contains the developed mathematical and numerical models necessary for conducting numerical studies in the field of the analysis of the welding process. The presented DFLUX subroutine allows the implementation of any mathematical model of the heating source and modelling of the movement of the source along any trajectory. As a part of the research, mathematical models are developed for three completely different welding techniques: fillet welding, circumferential welding and spiral welding. Each of these three methods requires the use of a completely different approach. Based on the developed mathematical and numerical models, testing calculations are performed. Selected calculations are compared with experimental results presented in the literature. The presented results of calculations allow for the confirmation of the correctness of the developed mathematical and numerical models of heat source power distribution.
Rocznik
Strony
97--108
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Department of Mechanics and Machine Design Fundamentals, Czestochowa University of Technology, Czestochowa, Poland
  • Department of Mechanics and Machine Design Fundamentals, Czestochowa University of Technology, Czestochowa, Poland
  • Department of Mechanics and Machine Design Fundamentals, Czestochowa University of Technology, Czestochowa, Poland
  • tomasz.domanski@pcz.pl
Bibliografia
  • 1. Shanmugam, N.S., Buvanashekaran, G., Sankaranarayanasamy, K., & Kumar, S.R. (2010). A transient finite element simulation of the temperature and bead profiles of T-joint laser welds. Mater. Design., 31, 4528-4542.
  • 2. Saternus, Z., & Piekarska, W. (2017). Numerical analysis of thermomechanical phenomena in laser welded pipe-to-flat. Procedia Engineering, 177, 196-203.
  • 3. Wałęsa, K., Malujda, I., Talaśka, K., & Wilczyński, D. (2020). Process analysis of the hot plate welding of drive belts. Acta Mechanica Et Automatica, 14(2), 84-90.
  • 4. Dowden, J.M. (2001). The Mathematics of Thermal Modelling. New York: Taylor & Francis Group.
  • 5. Saga, M., Vasko, M., Cubonova, N., & Piekarska, W. (2016). Optimisation Algorithms in Mechanical Engineering Applications, Harlow: Pearson.
  • 6. Domański, T., Piekarska, W., Kubika, M., & Saternus, Z. (2022). Analysis of physical and structural properties during modelling of the heating and cooling process of the steel ring. Acta Physica Polonica A, 142, 24-27.
  • 7. Bensada, M., Laazizi, A., Fri, K., & Fajoui, J. (2023). Numerical Simulation of Weld Thermal Efficiency GTAW Process. In: Azrar, L., et al. Advances in Integrated Design and Production II. CIP 2022. Lecture Notes in Mechanical Engineering. Cham: Springer.
  • 8. Fenggui, L., Shun, Y., Songnian, L., & Yongbing, L. (2004). Modelling and finite element analysis on GTAW arc and weld pool. Computational Materials Science, 29(3), 371-378.
  • 9. Li, R., & Li, T. (2024). Laser-Arc Hybrid Welding. Advanced Welding Methods and Equipment. Singapore: Springer.
  • 10. Pawlik, J., Bembenek, M., Góral, T., Cieślik, J., Krawczyk, J., Łukaszek-Sołek, A., Śleboda, T., & Frocisz, Ł. (2023). On the influence of heat input on Ni-WC GMAW hardfaced coating properties. Materials, 16, 3960.
  • 11. Pawlik, J., Cieślik, J., Bembenek, M., Góral, T., Kapayeva, S., & Kapkenova, M. (2022). On the influence of linear energy/heat input coefficient on hardness and weld bead geometry in chromium-rich stringer GMAW coatings. Materials, 15, 6019.
  • 12. Węglowski, M., Stano, S. et al. (2010). Characteristics of laser welded joints of HDT580X steel. Materials Science Forum, 638-642, 3739-3744.
  • 13. Long, H., Gery, D., Carlier, A., & Maropoulos, P.G. (2009). Prediction of welding distortion in butt joint of thin plates. Mater. Design, 30, 4126-4135.
  • 14. Arif, A.F.M., Al-Omari, A.S., Yilbas, B.S., & Al-Nassar, Y.N. (2011). Thermal stress analysis of spiral laser-welded tube. J. Mater. Process. Tech., 211, 675-687.
  • 15. Chang, K.H., & Lee, C.H. (2009). Behaviour of stresses in circumferential butt welds of steel pipe under superimposed axial tension loading. Mater. Struct., 42, 791-801.
  • 16. DASSAULT SYSTEM, (2007). Abaqus theory manual. Version 6.7, SIMULIA. USA.
  • 17. Tsirkas, S.A., Papanikos, P., & Kermanidis, Th. (2003). Numerical simulation of the laser welding process in butt-joint specimens. Journal of Materials Processing Technology, 134, 59-69.
  • 18. Goldak, J.A. (2005). Computational Welding Mechanics. New York: Springer.
  • 19. Cho, J.H., & Na, S.J. (2009). Three-dimensional analysis of molten pool in GMA-Laser hybrid welding. Welding Journal, 88, 35-43.
  • 20. Kermanpur, A., Shamanian, M., & Yeganeh, V.E. (2008). Three-dimensional thermal simulation and experimental investigation of GTAW circumferentially butt-welded Incoloy 800 pipes. Journal of Materials Processing Technology, 199, 295-303.
  • 21. Saternus, Z., Piekarska, W., Kubiak, M., & Domański, T. (2021). The influence of welding heat source inclination on the melted zone shape, deformations and stress state of laser welded T-joints. Materials, 14(18), 5303.
  • 22. Chang, K.H., & Lee, C.H. (2009). Behaviour of stresses in circumferential butt welds of steel pipe under superimposed axial tension loading. Materials and Structures, 42, 791-801.
  • 23. Stano, S., Adamiec, J., Dworak, J., & Urbańczyk, M. (2016). Badania procesu spawania laserowego złączy teowych z cienkich blach ze stali austenitycznej. Biuletyn Instytutu Spawalnictwa, 5, 141-151.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6027fe98-5b01-48a3-8349-513e284688a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.