PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Life cycle assessment of glass/polyester laminates used in the shipbuilding industry and its fire behavior

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena cyklu życia laminatów szklano-poliestrowych stosowanych w przemyśle stoczniowym i ich reakcji na ogień
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to assess the environmental performance of the manufacturing process of glass/polyester laminates as well as estimate their fire behaviour and smoke release. The Life Cycle Assessment was conducted according to the ISO14040/44 standard by using the CML-IA 2000 Baseline Midpoint method. The cone calorimeter study was conducted using a cone calorimeter method according to ISO 5660. The tests were performed under 25 kW/m2 heat flux 50 kW/m2. The results showed that according to the requirements of the Fire Test Procedure (FTP) Code examined, laminates in this form cannot be used in some applications. The LCA study showed that the highest impact is attributed to marine aquatic ecotoxicity (88.3%), with the highest contribution of the unsaturated polyester resin and the glass fibre.
PL
Celem pracy jest ocena wpływu procesu produkcji laminatów poliestrowo-szklanych na środowisko oraz ocena ich zachowania w warunkach pożaru. Ocenę cyklu życia przeprowadzono zgodnie z normą ISO14040/44, stosując metodę CML-IA 2000 Baseline. Badania kalorymetryczne przeprowadzono metodą kalorymetru stożkowego zgodnie z normą ISO 5660. Badania przeprowadzono przy gęstościach strumienia promieniowania cieplnego równych 25 kW/m2 i 50 kW/m2. Wyniki wykazały, że zgodnie z wymaganiami międzynarodowego kodeksu stosowania procedur prób ogniowych badane laminaty w tej postaci nie spełniają wymagań dotyczących niektórych zastosowań. Ocena cyklu życia wykazała, że proces produkcji laminatów oddziałuje w największym stopniu na toksyczność wody morskiej (88.3%), przy największym udziale nienasyconej żywicy poliestrowej i włókna szklanego.
Rocznik
Tom
Strony
236--254
Opis fizyczny
Bibliogr, 34 poz., rys., tab.
Twórcy
  • Bialystok University of Technology, Department of Chemistry, Biology and Biotechnology
  • Fire University, Institute of Safety Engineering
  • Bialystok University of Technology, Department of Chemistry, Biology and Biotechnology
  • Lodz University of Technology, Faculty of Process and Environmental Engineering
  • Łukasiewicz – Industrial Chemistry Institute
Bibliografia
  • 1. Abdou, K., Le Loc’h, F., Gascuel, D., Romdhane, M. S., Aubin, J., & Ben Rais Lasram, F. (2020). Combining ecosystem indicators and life cycle assessment for environmental assessment of demersal trawling in Tunisia. The International Journal of Life Cycle Assessment, 25(1), 105-119. https://doi.org/10.1007/s11367-019-01651-5
  • 2. Bałdowska-Witos, P., Piasecka, I., Flizikowski, J., Tomporowski, A., Idzikowski, A., & Zawada, M. (2021). Life Cycle Assessment of Two Alternative Plastics for Bottle Production. Materials, 14(16). https://doi.org/10.3390/ma14164552
  • 3. Barboni, T., Leonelli, L., Santoni, P.-A., & Tihay-Felicelli, V. (2017). Influence of particle size on the heat release rate and smoke opacity during the burning of dead Cistus leaves and twigs. Journal of Fire Sciences, 35(4), 259-283. https://doi.org/10.1177/0734904117709964
  • 4. Barsotti, B., Gaiotti, M., & Rizzo, C. M. (2020). Recent Industrial Developments of Marine Composites Limit States and Design Approaches on Strength. Journal of Marine Science and Application, 19(4), 553-566. https://doi.org/10.1007/s11804-020-00171-1
  • 5. Benzarti, K., & Colin, X. (2013). Understanding the durability of advanced fibre-reinforced polymer (FRP) composites for structural applications. In J. Bai (Ed.), Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications (pp. 361-439). Woodhead Publishing. https://doi.org/10.1533/9780857098641.3.361
  • 6. Berberich, J., Li, T., & Sahle-Demessie, E. (2019). Biosensors for Monitoring Water Pollutants: A Case Study With Arsenic in Groundwater. In S. Ahuja (Ed.), Separation Science and Technology (pp. 285-328). Academic Press. https://doi.org/10.1016/B978-0-12-815730-5.00011-9
  • 7. Bolf, D., Zamarin, A., & Basan, R. (2020). Composite Material Damage Processes. Journal of Maritime & Transportation Science, 3(3), 307-323.
  • 8. Di Giuseppe, E., D’Orazio, M., Du, G., Favi, C., Lasvaux, S., Maracchini, G., & Padey, P. (2020). A Stochastic Approach to LCA of Internal Insulation Solutions for Historic Buildings. Sustainability, 12(4), 1535. https://doi.org/10.3390/su12041535
  • 9. Do Thi, H., Pasztor, T., Fozer, D., Manenti, F., & Toth, A. J. (2021). Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle Pestle and Multi-Criteria Decision Analyses. Water, 13(21), 1-27. https://doi.org/10.3390/w13213023
  • 10. Dowbysz, A., Samsonowicz, M., & Kukfisz, B. (2021). Modification of Glass/Polyester Laminates with Flame Retardants. Materials, 14(24), 7901. https://doi.org/10.3390/ma14247901
  • 11. Ead, A. S., Appel, R., Alex, N., Ayranci, C., & Carey, J. P. (2021). Life cycle analysis for green composites: A review of literature including considerations for local and global agricultural use. Journal of Engineered Fibers and Fabrics, 16. https://doi.org/10.1177/15589250211026940
  • 12. Farinha, C., de Brito, J., & Veiga, M. D. (2021). Life cycle assessment. In C. Farinha, J. de Brito & M.D. Veiga (Eds.), Eco-Efficient Rendering Mortars (pp. 205-234). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818494-3.00008-8
  • 13. Flasińska, P., Maranda, A., & Kukfisz, B. (2018). Materiały wybuchowe i ich wpływ na środowisko. Przemysł chemiczny, 97(11), 1957-1961. https://doi.org/10.15199/62.2018.11.30 (in Polish).
  • 14. Gabathuler, H. (1997). LCA History: Centrum voor Milieukunde Leiden (CML). The International Journal of Life Cycle Assessment, 2(4), 187-194. https://doi.org/10.1007/BF02978413
  • 15. Gabathuler, H. (2006). The CML Story: How Environmental Sciences Entered the Debate on LCA. The International Journal of Life Cycle Assessment, 11(1), 127-132. https://doi.org/10.1065/lca2006.04.021
  • 16. Gkoloni, N., & Kostopoulos, V. (2021). Life cycle assessment of bio-composite laminates. A comparative study. IOP Conference Series: Earth and Environmental Science, 899(1), 012041. https://doi.org/10.1088/1755-1315/899/1/012041
  • 17. Heijungs, R., & Ligthart, T. (2004). Improvement of LCA characterization factors and LCA practice for metals. https://www.semanticscholar.org/paper/Improvement-of-LCA-characterization-factors-and-LCA-Westenenk-Heijungs/71b011cdda2161f7670be5e85e540716fdc3d4ba
  • 18. Hertwich, E. G., Mateles, S. F., Pease, W. S., & McKone, T. E. (2001). Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environmental Toxicology Chemistry, 20(4), 928-939.
  • 19. Hiltz, J. A. (2011). New Technologies and Materials for Enhanced Damage and Fire Tolerance of Naval Vessels. Canada: Defence R&D Canada – Atlantic.
  • 20. Horváthová, M., & Makovická Osvaldová, L. (2020). Testing of natural insulation materials using a conical calorimeter. Proceedings of CBU in Natural Sciences and ICT, Prague, Czech Republic, 1, 14-20. https://doi.org/10.12955/pns.v1.115
  • 21. Hupfer, M., & Hilt, S. (2008). Lake Restoration. In S.E. Jørgensen & B.D. Fath (Eds.), Encyclopedia of Ecology (pp. 2080-2093). Academic Press. https://doi.org/10.1016/B978-008045405-4.00061-6
  • 22. International Maritime Organization. (2012). FTP Code : International code for application of fire test procedures. London : International Maritime Organization. https://nla.gov.au/nla.cat-vn6156311
  • 23. Jacob-Lopes, E., Zepka, L. Q., & Deprá, M. C. (2021). Methods of evaluation of the environmental impact on the life cycle. In E. Jacob-Lopes, L.Q. Zepka & M.C. Deprá (Eds.), Sustainability Metrics and Indicators of Environmental Impact (pp. 29-70). Elsevier. https://doi.org/10.1016/B978-0-12-823411-2.00003-7
  • 24. Joseph, A., & Dalaklis, D. (2021). The international convention for the safety of life at sea: highlighting interrelations of measures towards effective risk mitigation. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 5(1), 1-11. https://doi.org/10.1080/25725084.2021.1880766
  • 25. Krasny, J. F., Parker, W. J., & Babrauskas, V. (2001). Fundamentals. In J.F. Krasny, W.J. Parker & V. Babrauskas (Eds.), Fire Behavior of Upholstered Furniture and Mattresses (pp. 18-82). William Andrew Publishing. https://doi.org/10.1016/B978-081551457-2.50003-6
  • 26. Kukfisz, B., & Maranada, A. (2014). Zastosowanie metody oceny cyklu życia (LCA) do oszacowania wpływu na środowisko górniczych materiałów wybuchowych ładowanych mechanicznie. Chemik, 68(1), 29-33. (in Polish).
  • 27. Lan, K., & Yao, Y. (2022). Dynamic Life Cycle Assessment of Energy Technologies under Different Greenhouse Gas Concentration Pathways. Environmental Science & Technology, 56(2), 1395-1404. https://doi.org/10.1021/acs.est.1c05923
  • 28. Marquis, D., Guillaume, E., & Lesenechal, D. (2013). Accuracy (Trueness and Precision) of Cone Calorimeter Tests with and Without a Vitiated Air Enclosure. Procedia Engineering, 62, 103-119. https://doi.org/10.1016/j.proeng.2013.08.048
  • 29. Rödger, J.-M., Beier, J., Schönemann, M., Schulze, C., Thiede, S., Bey, N., & Hauschild, M. Z. (2021). Combining Life Cycle Assessment and Manufacturing System Simulation: Evaluating Dynamic Impacts from Renewable Energy Supply on Product-Specific Environmental Footprints. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(3), 1007-1026. https://doi.org/10.1007/s40684-020-00229-z
  • 30. Rubino, F., Nisticò, A., Tucci, F., & Carlone, P. (2020). Marine Application of Fiber Reinforced Composites: A Review. Journal of Marine Science and Engineering, 8(1), 26. https://doi.org/10.3390/jmse8010026
  • 31. Schartel, B., & Hull, T. R. (2007). Development of fire-retarded materials - Interpretation of cone calorimeter data. Fire and Materials, 31(5), 327-354. https://doi.org/10.1002/fam.949
  • 32. Segovia, F., Blanchet, P., Amor, B., Barbuta, C., & Beauregard, R. (2019). Life Cycle Assessment Contribution in the Product Development Process Case Study of Wood Aluminum-Laminated Panel. Sustainability, 11(8), 1-20.
  • 33. Sonnier, R., Vahabi, H., & Chivas-Joly, C. (2019). New Insights into the Investigation of Smoke Production Using a Cone Calorimeter. Fire Technology, 55(3), 853-873. https://doi.org/10.1007/s10694-018-0806-z
  • 34. Van Oers, L., De Koning, A., Guinée, J. B., & Huppes, G. (2002). Abiotic resource depletion in LCA: Improving characterisation factors for abiotic resource depletion as recommended in the new Dutch LCA Handbook. Netherlands: Road and Hydraulic Engineering Institute.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6027a998-bb11-434d-b3f4-581532be4c0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.