Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the investigations and performance analysis of monofacial and bifacial crystalline silicon solar cells with PC1D simulation software. The fundamental limitation in the monofacial solar cell’s performance is its inability to absorb all the incoming solar radiation since the albedo effect (ground-reflected light that can be captured by the rear of the solar cell) is often neglected. So, the efficiency of the monofacial cell will be lower due to poor and incomplete optical absorption. Bifaciality helps to enhance the capturing of light in the solar cell, which means that the rear of the cell is exposed to solar radiation to produce electrical power. The primary focus of our work is to determine which solar cell offers better device performance and conversion efficiency by analyzing various parameters of the solar cell like surface texturing, emitter doping, bulk doping, minority carrier lifetime, bulk and surface recombination rates, front and rear reflectance, among other parameters. The other parameters are maintained at an optimal range to achieve the highest conversion efficiency. Our work has shown that the bifacial solar cell can be as efficient as 28.15%, which is much better than the 22.65% efficiency of the monofacial solar cell.
Czasopismo
Rocznik
Tom
Strony
327--351
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of ECE, SRM Institute of Science and Technology, Tamilnadu, India
autor
- Department of ECE, SRM Institute of Science and Technology, Tamilnadu, India
Bibliografia
- [1] GRAY J.L., [In] Handbook of Photovoltaic Science and Engineering, [Eds.] Luque A., Hegedus S., Second Ed., John Wiley & Sons, 2010: 82-129. https://doi.org/10.1002/9780470974704.fmatter
- [2] MEHMOOD H., NASSER H., TAUQEER T., TURAN R., Numerical analysis of dopant‐free asymmetric silicon heterostructure solar cell with SiO2 as passivation layer, International Journal of Energy Research 44(13), 2020: 10739-10753. https://doi.org/10.1002/er.5720
- [3] KITAI A., Principles of Solar Cells, LEDs and Diodes: The role of the PN junction, First Ed., John Wiley & Sons, 2011. https://doi.org/10.1002/9781119974543
- [4] BECKER C., AMKREUTZ D., SONTHEIMER T., PREIDEL V., LOCKAU D., HASCHKE J., JOGSCHIES L., KLIMM C., MERKEL J.J., PLOCICA P., STEFFENS S., RECH B., Polycrystalline silicon thin-film solar cells: Status and perspectives, Solar Energy Materials and Solar Cells 119, 2013: 112-123. https://doi.org/10.1016/j.solmat.2013.05.043
- [5] ISLAM R., ABRAR M.M., Comparative analysis of a bifacial and a polycrystalline solar cell device performances by optimizing effective parameters using PC1D, [In] 2020 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), 2020: 16-20. https://doi.org/10.1109/ICSGCE49177.2020.9275602
- [6] SEPEAI S., ZAIDI S.H., DESA M.K.M., SULAIMAN M.Y., LUDIN N.A., ADIB IBRAHIM M., SOPIAN K., Design optimization of bifacial solar cell by PC1D simulation, Journal of Energy Technologies and Policy 3(5), 2013: 1-11.
- [7] SEPEAI S., CHEOW S.L., SULAIMAN M.Y., SOPIAN K., ZAIDI S.H., Fabrication and characterization of Al-BSF bifacial solar cell, [In] 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013: 2664-2668. https://doi.org/10.1109/PVSC.2013.6745021
- [8] HASHMI G., AKAND A.R., HOQ M., RAHMAN H., Study of the enhancement of the efficiency of the monocrystalline silicon solar cell by optimizing effective parameters using PC1D simulation, Silicon 10(4), 2018: 1653-1660. https://doi.org/10.1007/s12633-017-9649-3
- [9] THIRUNAVUKKARASU G.S., SEYEDMAHMOUDIAN M., CHANDRAN J., STOJCEVSKI A., SUBRAMANIAN M., MARNADU R., ALFAIFY S., SHKIR M., Optimization of mono-crystalline silicon solar cell devices using PC1D simulation, Energies 14(16), 2021: 4986. https://doi.org/10.3390/en14164986
- [10] AHMED M.S., AHMAD S.M., SUBHYALJADER M., Study the role of effective parameters in enhancement of the silicon solar cell performance using PC1D simulation, Journal of Ovonic Research 16(2), 2020: 97-106.
- [11] GOETZBERGER A., KNOBLOCH J., VOSS B., Crystalline Silicon Solar Cells, Vol. 1., John Wiley & Sons, 1998. https://doi.org/10.1002/9781119033769
- [12] RAINA G., SINHA S., A simulation study to evaluate and compare monofacial Vs bifacial PERC PV cells and the effect of albedo on bifacial performance, Materials Today: Proceedings 46, 2021: 5242-5247. https://doi.org/10.1016/j.matpr.2020.08.632
- [13] SEPEAI S., SULAIMAN M.Y., ZAIDI S.H., SOPIAN K., Enhanced light absorption in bifacial solar cells, [In] 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), 2012: 38-41. https://doi.org/10.1109/SMElec.2012.6417086
- [14] LEWIS M.R., TONITA E.M., VALDIVIA C.E., OBHI R.J.K., LESLIE J., BERTONI M.I., HINZER K., Angular dependence of textured bifacial silicon heterojunction solar cells for high latitudes, [In] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), 2019: 1919-1923. https://doi.org/10.1109/PVSC40753.2019.8980857
- [15] HAUG H., GREULICH J., PC1Dmod 6.2 – Improved simulation of c-Si devices with updates on device physics and user interface, Energy Procedia 92, 2016: 60-68. https://doi.org/10.1016/j.egypro.2016.07.010
- [16] BASORE P.A., Numerical modeling of textured silicon solar cells using PC-1D, IEEE Transactions on Electron Devices 37(2), 1990: 337-343. https://doi.org/10.1109/16.46362
- [17] PAN A.C., DEL CANIZO C., LUQUE A., Effect of thickness on bifacial silicon solar cells, [In] 2007 Spanish Conference on Electron Devices, 2007: 234-237. https://doi.org/10.1109/SCED.2007.384035
- [18] BELARBI M., BENYOUCEF A., BENYOUCEF B., Simulation of the solar cells with PC1D – Application to cells based on silicon, Advanced Energy: An International Journal (AEIJ) 1(3), 2014: 1-10.
- [19] VASOYA N.H., DHARMENDRA R., MODI K.B., Effect of doping and thickness of si on superlative photovoltaic cell using PC1D, Global Research and Development Journal For Engineering 5(9), 2020: 1-6.
- [20] JANSSEN G.J.M., TOOL K.C.J., KOSSEN E.J., VAN AKEN B.B., CARR A.J., ROMIJN I.G., Aspects of bifacial cell efficiency, Energy Procedia 124, 2017: 76-83. https://doi.org/10.1016/j.egypro.2017.09.334
- [21] PENG Z.-W., KODUVELIKULATHU L.J., KOPECEK R., The impact of bulk resistivity on bifacial n-PERT rear junction solar cells, [In] 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), 2020: 1606-1610. https://doi.org/10.1109/PVSC45281.2020.9301030
- [22] EDLER A., MIHAILETCHI V.D., KODUVELIKULATHU L.J., COMPAROTTO C., KOPECEK R., HARNEY R., Metallization-induced recombination losses of bifacial silicon solar cells, Progress in Photovoltaics 23(5), 2015: 620-627. https://doi.org/10.1002/pip.2479
- [23] SUBRAMANIAN M., NAGARAJAN B., RAVICHANDRAN A., SUBHASH BETAGERI V., THIRUNAVUKKARASU G.S., JAMEI E., SEYEDMAHMOUDIAN M., STOJCEVSKI A., MEKHILEF S., MINNAM REDDY V.R., Optimization of effective doping concentration of emitter for ideal c-Si solar cell device with PC 1 D simulation, Crystals 12(2), 2022: 244. https://doi.org/10.3390/cryst12020244
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6026afbd-738a-4ead-b9b2-24909aa12f74