PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Titania Nanoparticles Doped Electrospun Membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrospun membranes exhibit very promising properties, such as high surface area, high surface area-to-pore volume ratio, high pore interconnectivity, and uniform pore distribution. Nanoparticles are a promising alternative for improving the properties of the electrospun membranes. Titania nanoparticles, which are stable, resistant, and non-toxic, have various applications including water treatment, sensors, food additive and cosmetics. Due to the high hydrophilicity of titania nanoparticles, membrane fouling is reduced in titania nanoparticles doped membranes. Titania nanoparticle doped polyacrylonitrile (PAN) nanocomposite electrospun membranes were prepared by electrospinning method in this work. Compared to bare PAN electrospun membranes 0.05% titania nanoparticles doped electrospun membranes have thinner nanofibers, higher hydrophilicity and almost 2 times lower bovine serum albumin adsorption, which shows lower fouling tendency.
Twórcy
  • Suleyman Demirel University, Department of Environmental Engineering, 32260 Isparta, Turkey
  • University of Liverpool, Department of Civil Engineering and Industrial Design, L69 3GH Liverpool, UK
  • Provincial Directorate of Environment and Urbanization Ministry, Governorship of Burdur, 15100, Burdur, Turkey
Bibliografia
  • [1] L. Wang, Y. Yu, P.C. Chen, D.W. Zhang, C.H. Chen, Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J. Power Sources 183, 717-723 (2008).
  • [2] J.J. Wang, L.X. Dai, Q. Gao, P.F. Wu, X.B. Wang, Electrospun nanofibers of polyferrocenylsilanes with different substituents at silicon. Eur. Polym. J. 44, 602-607 (2008).
  • [3] J. Wu, J.L. Coffer, Strongly emissive erbium-doped tin oxide nanofibers derived from sol gel/electrospinning methods. J. Phys. Chem. C 111, 16088-16091 (2007).
  • [4] G.C.R. Jian H. Yu, Electrospinning, in: Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc, (2007).
  • [5] D. Li, Y.N. Xia, Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 16, 1151-1170 (2004).
  • [6] S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications. Polymer 49, 5603-5621 (2008).
  • [7] W.X. Zhang, Y.Z. Wang, C.F. Sun, Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electro-spinning. J. Polym. Res. 14, 467-474 (2007).
  • [8] S. Ramakrishna, An introduction to electrospinning and nano-fibers. World Scientific, Hackensack, NJ, 2005.
  • [9] D. Zhang, A.B. Karki, D. Rutman, D.R. Young, A. Wang, D. Cocke, T.H. Ho, Z.H. Guo, Electrospun polyacrylonitrile nano-composite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer 50, 4189-4198 (2009).
  • [10] L. Ghadiri, A. Bozorg, A. Shakeri, Electrospun polyamide thin film composite forward osmosis membrane: Influencing factors affecting structural parameter. Membr. Water. Treat. 10, 417-429 (2019).
  • [11] R. Chen, S.Z. Zhao, G.Y. Han, J.H. Dong, Fabrication of the silver/polypyrrole/polyacrylonitrile composite nanofibrous mats. Mater. Lett. 2, 4031-4034 (2008).
  • [12] M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Electrospinning of polyurethane fibers. Polymer 43, 3303-3309 (2002).
  • [13] F. Fadil, N.D.N. Affandi, M.I. Misnon, N.N. Bonnia, A.M. Harun, M.K. Alam, Review on Electrospun Nanofiber-Applied Products. Polymers-Basel, 13 (2021).
  • [14] Kenry, C.T. Lim, Nanofiber technology: current status and emerging developments. Prog. Polym. Sci. 70, 1-17 (2017).
  • [15] F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning for membrane fabrication: Challenges and applications, Desalination 356, 15-30 (2015).
  • [16] A. Nadaf, A. Gupta, N. Hasan, Fauziya, S. Ahmad, P. Kesharwani, F.J. Ahmad, Recent update on electrospinning and electrospun nanofibers: current trends and their applications. Rsc. Adv. 12, 23808-23828 (2022).
  • [17] S. Aghayari, The Porosity of Nanofiber Layers. In: M.M.M. Elnashar, S. Karakuş (Eds.) Biocomposites - Recent Advances, (2023).
  • [18] N.A.A.M. Amin, M.A. Mokhter, N. Salamun, M.F. Mohamad, W.M.A.W. Mahmood, Anti-fouling electrospun organic and inorganic nanofiber membranes for wastewater treatment. South African Journal of Chemical Engineering 44, 302-317 (2023).
  • [19] S.S. Ray, S.S. Chen, N.C. Nguyen, H.T. Nguyen, Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. Micro & Nano Technol. 247-273 (2019).
  • [20] S.H. Park, Y.S. Ko, S.J. Park, J.S. Lee, J. Cho, K.Y. Baek, I.T. Kim, K. Woo, J.H. Lee, Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J. Membrane Sci. 499, 80-91 (2016).
  • [21] N.D. Zhang, G.Y. Xiong, Z.J. Liu, Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotech 10 (2022).
  • [22] F. Mehrpouya, H. Tavanai, M. Morshed, M. Ghiaci, The formation of titanium dioxide crystallite nanoparticles during activation of PAN nanofibers containing titanium isopropoxide. J. Nanopart Res. 14 (2012).
  • [23] M. Alzamani, A. Shokuhfar, E. Eghdam, S. Mastali, Influence of catalyst on structural and morphological properties of TiO2 nanostructured films prepared by sol-gel on glass. Prog. Nat. Sci.-Mater. 23, 77-84 (2013).
  • [24] F. Mohamadi, N. Parvin, Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength. Membr. Water Treat. 6, 251-262 (2015).
  • [25] Y.C. Su, C.P. Huang, J.R. Pan, W.P. Hsieh, M.C. Chu, Fouling Mitigation by TiO2 Composite Membrane in Membrane Bioreactors. J. Environ. Eng.-Asce. 138, 344-350 (2012).
  • [26] T.W. Xu, R.Q. Fu, L.F. Yan, A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, ftir analyses, and AFM observations. J. Colloid. Interf. Sci. 262, 342-350 (2003).
  • [27] A.R. Shaikh, H. Karkhanechi, T. Yoshioka, H. Matsuyama, H. Takaba, D.M. Wang, Adsorption of bovine Serum albumin on Poly(vinylidene fluoride) Surfaces in the Presence of Ions: A Molecular Dynamics Simulation. J. Phys. Chem. B 122, 1919-1928 (2018).
  • [28] P. Le-Clech, Protein Fouling Mechanisms. In: E. Drioli, L. Giorno (Eds.) Encyclopedia of Membranes, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-2 (2015).
  • [29] E. Bahmani, H.S. Zonouzi, S. Koushkbaghi, F.K. Hafshejani, A.F. Chimeh, M. Irani, Electrospun polyacrylonitrile/cellulose acetate/MIL-125/TiO(2) composite nanofibers as an efficient photocatalyst and anticancer drug delivery system. Cellulose 27 10029-10045 (2020).
  • [30] S. Hartati, A. Zulfi, P.Y.D. Maulida, A. Yudhowijoyo, M. Dioktyanto, K.E. Saputro, A. Noviyanto, N.T. Rochman, Synthesis of Electrospun PAN/TiO2/Ag Nanofibers Membrane as Potential Air Filtration Media with Photocatalytic Activity. Acs Omega 7, 10516-10525 (2022).
  • [31] A.G. Koozekonan, M.R.M. Esmaeilpour, S. Kalantary, A. Karimi, K. Azam, V.A. Moshiran, F. Golbabaei, Fabrication and characterization of PAN/CNT, PAN/TiO2, and PAN/CNT/TiO(2)nanofibers for UV protection properties. J. Text. I 112, 946-954 (2021).
  • [32] E. Celik, L. Liu, H. Choi, Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Water Research 45, 5287-5294 (2011).
  • [33] F.H. Al-Ani, Q.F. Alsalhy, R.S. Raheem, K.T. Rashid, A. Figoli, Experimental Investigation of the Effect of Implanting TiO2-NPs on PVC for Long-Term UF Membrane Performance to Treat Refinery Wastewater. Membranes-Basel, 10 (2020).
Uwagi
We acknowledge the support of Suleyman Demirel University under the Scientific Research Projects Program (FBY-2018-5377) and the Scientific and Technological Research Council of Turkey (TUBITAK) under the Support Program for Scientific and Technological Research Projects (111R012). Additionally, we are grateful to the National Research Center on Membrane Technologies (MEM-TEK) at Istanbul Technical University for granting us access to their electrospinning instrument.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6022ce57-274d-45a0-b078-ed9684e4d0a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.