Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A variational representation for positive functionals of a Hilbert space valued Wiener process (W(-)) is proved. This representation is then used to prove a large deviations principle for the family {Gε(W{‧))} ε>0 where G is an appropriate family of measurable maps from the Wiener space to some Polish space.
Czasopismo
Rocznik
Tom
Strony
39--61
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Department of Mathematics, University of Notre Dame, Notre Dame, IN 46656, USA
autor
- Lefschetz Center for Dynamical Systems, Brown University, Providence, RI 02912, USA
Bibliografia
- [1] M. Boué and P. Dupuis, A variational representation for certain functionals of Brownian motion, Ann. Probab. 26, No. 4 (1998), pp. 1641-1659.
- [2] W. Bryc, Large deviations by asymptotic value method, 1990.
- [3] A. Budhiraja and P. Dupuis, Large deviation properties of dynamical systems driven by infinite dimensional Brownian motion, Preprint, 1999.
- [4] P. Chow, Large deviation problem for some parabolic ltô equations, Comm. Pure Appl. Math. 45 (1992), pp. 97-120.
- [5] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.
- [6] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Academic Press, San Diego, Calif., 1989.
- [7] J.-D. Deuschel and D. Stroock, Large Deviations, Academic Press, San Diego, Calif., 1989.
- [8] J. L. Doob, Measure Theory, Springer, New York 1994.
- [9] N. Dunford and J. Schwartz, Linear Operators. Parts I, II, III, Interscience Publishers, Wiley, 1958.
- [10] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley, 1997.
- [11] R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics, Springer, New York 1985.
- [12] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, 1986.
- [13] M. I. Freidlin, Random perturbations of reaction diffusion equations: the quasi-deterministic approach, Trans. Amer. Math. Soc. 305 (1988), pp. 665-697.
- [14] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York51984.
- [15] K. Itô, Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, SIAM, Philadelphia, 1984.
- [16] G. Kallianpur, Stochastic Filtering Theory, Springer, 1980.
- [17] G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces, Institute of Mathematical Statistics, 1996.
- [18] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991.
- [19] M. Metivier, Semimartingales, Walter de Gruyter, 1982.
- [20] M. Metivier and J. Pellaumail, Stochastic Integration, New York 1980.
- [21] S. Peszat, Large deviation principle for stochastic evolution equations, Probab. Theory Related Fields 98 (1994), pp. 113-136.
- [22] R. Sowers, Large deviations for a reaction diffusion equation with non-gaussian perturbations, Ann. Probab. 20 (1992), pp. 504-537.
- [23] S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984.
- [24] S. R. S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math. 19 (1966), pp. 261-286.
- [25] J. B. Walsh, An introduction to stochastic partial differential equations, Ecole d’Eté de Probabilités de Saint-Flour XIV, Lecture Notes in Math. (1986), pp. 266-443.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-601f95a2-af6b-42ec-958d-01e3e97ee529