PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on ultrasound assisted desulfurization of light gas oil using inorganic liquid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The feasibility of removing sulfur from real light gas oil using inorganic liquids (NaOH, Ca(OH)2 and HCl) at various concentrations assisted with ultrasonication was investigated in a continuous flow setup. Experimental results showed that at the optimum operating time (40 min), 68% of sulfur was removed under mild conditions using 10 wt. % NaOH. Ultrasonication not only facilitated sulfur removal but also improved gas oil properties by decreasing density and viscosity by 1.40 and 4.42%, respectively, while the cetane number (CN) was increased by 7.0%. Solute selectivity (S) depending on sulfur mole fraction (xS) was correlated using StatPlus 6.7.1.0 software and the following values have been obtained: S = 53.869e–2.552xs, and S = 29.573 – 41.878xs for mixtures of 10% Ca(OH)2 + S-compound + oil, and 10% NaOH + S-compound + oil, respectively. The correlation coefficients (R2) for the above equations were 0.9813 and 0.9611, respectively. An empirical correlation related to sulfur removal as a function of processing time and solvent concentration was found with R2 = 0.956. The results of the present work confirmed the feasibility of employing the hybrid method of ultrasonication with using alkaline liquids for sulfur removal.
Rocznik
Strony
5--19
Opis fizyczny
Bibliogr. 30 poz., tab., rys.
Twórcy
  • Department of Chemical Engineering, University of Technology, Baghdad, Iraq
  • Department of Medical Instrumentation, Al-Hikma University College, Baghdad, Iraq
  • Department of Chemical Engineering, Suleyman Dimirel University, Isparta, Turkey
Bibliografia
  • [1] SONG C., An overview of new approaches to deep desulfurization for ultraclean gasoline, diesel fuel and jet fuel, Catal. Today, 2003, 86, 211–263.
  • [2] GAWANDE P.R., Desulphurization techniques for liquid fuel. A review, Int. J. Eng. Tech., Manage. Appl. Sci., 2014, 2 (7), 121–127.
  • [3] JOCHEN E., PETER W., ANDREAS J., Deep desulfurization of oil refinery streams by extraction with ionic liquids, Green Chem., 2004, 6, 316–322.
  • [4] DUARTE F.A., MELLO P.A., BIZZI C.A., NUNES M.A.G., MOREIRA E.M., ALENCAR M.S., MOTTA H.N., DRESSLER V.L., FLORES E.M.M., Sulfur removal from hydrotreated petroleum fractions using ultrasound-assisted oxidative desulfurization process, Fuel, 2010, 90, 2158–2164.
  • [5] SHAFEGHAT A., GHAEDIAN M., MEHRABI M., Desulfurization of gas oil by using ultrasonic waves, J. Petr. Res., 2015, 24 (80), 85–95.
  • [6] MOCHIZUKI Y., SUGAWARA K., Removal of organic sulfur from hydrocarbon resources using ionic liquids, Energy Fuels, 2008, 22, 3303–3307.
  • [7] LI F.T., LIU Y., SUN Z.M., Deep extractive desulfurization of gasoline with xEt3NHCl3 FeCl3 ionic liquids, Energy Fuels, 2010, 24, 4285–4289.
  • [8] HANSMEIER A.R., MEINDERSMA G.W., DE HAAN A.B., Desulfurization and denitrogenation of gasoline and diesel fuels by means of ionic liquids, Green Chem., 2011, 13, 1907–1913.
  • [9] NIE Y., LI C.X., MENG H., N,N-dialkylimidazolium dialkylphosphate ionic liquids: their extractive performance for thiophene series compounds from fuel oils versus the length of alkyl group, Fuel Proc. Technol., 2008, 89, 978–983.
  • [10] STAGNER B.A., KALICHEVSKY V.A., Chemical Refining of Petroleum, 2nd Ed., Reinhold Publishing Corporation, New York 1942, 217–237.
  • [11] FOMIN V.A., VILDANOV A.F., MAZGAROV A.M., Implementation demercaptanization process of butane-butylene fraction in the gas fractionation plant in Ryazan Oil Refinery, Nefteper. Neftekhim., 1987, 12, 14–15.
  • [12] AKHMADULLINA A.G., KIZHAEV B.V., NURGALIEVA G.M., Heterogeneous catalyzation demercaptanization of the light hydrocarbons, Nefteper. Neftekhim., 1994, 2, 39–41.
  • [13] DEMIRBAS A., Desulfurization of lignite and coal using alkaline solution from biomass ashes, Energy Expl. Expl., 2002, 20 (5), 371–378.
  • [14] AKHMADULLINA A.G., AKHMADULLIN R.M., AGADZHANYAN S.I., New developments and implementations in the field of hydrocarbon-stock desulfurization, Chem. Techn. Fuels Oils, 2008, 44 (6), 371–378.
  • [15] DEMIRBAS A., ALIDRISI H., BALUBAID M.A., API gravity, sulfur content, and desulfurization of crude oil, Petr. Sci. Techn., 2015, 33 (1), 93–101.
  • [16] AFSHAR A.S., HASHEM S.R., Role and effect of temperature on LPG sweetening process, Int. J. Chem. Mol. Eng., 2011, 5 (7), 628–630.
  • [17] MELLO P.A., DUARTE F.A., NUNES M.A.G., ALENCAR M.S., MOREIRA E.M., KORN M., DRESSLER V.L., FLORESS E.M.M., Ultrasound-assited oxidative process for sulfur removal from petroleum product feedstock, Ultrason. Sonochem., 2009, 16, 732–736.
  • [18] SHAKIRULLAH M., AHMAD I., WAQAS A., ISHAQ M., Desulfurization study of petroleum products through extraction with aqueous ionic liquids, J. Chil. Chem. Soc., 2010, 55 (2), 179–183.
  • [19] HEINRICH G., KASZTELAN S., Hydrotreating, [In:] P. Leprince (Ed.), Conversion Processes, Editions TECHNIP, Paris 2001, 533–573.
  • [20] CABO B.R., Desulfurization of fuels with ionic liquids by extraction and oxidative extraction processes, PhD Thesis, University of Santiago de Compostela, Santiago de Compostela 2013.
  • [21] ROBBINS L.A., CUSACK R.W., Liquid–liquid extraction operations and equipment, [In:] D.W. Green, J.O. Maloney (Eds.), Perry’s Chemical Engineering Handbook, 7th Ed., McGraw-Hill, 1997.
  • [22] FARSHI A., RABIEI Z., Kinetic study for oxidation of existing mercaptans in kerosene using impregnated activated carbon with MEROX catalyst in alkaline solution, Petrol. Coal, 2005, 47 (1), 49–56.
  • [23] LEERDAM R.C., Anaerobic Degradation of Methanethiol in a Process for Liquefied Petroleum Gas (LPG) Biodesulfurization. PhD Thesis, Wageningen University, the Netherlands, 2007.
  • [24] SLAMET S., PURWANTO P., DIDI D.A., HERMA W., Enhancing biodiesel from Kemiri Sunan Oil Manufacturing using ultrasonics, 2nd International Conference on Energy, Environmental and Information System (ICENIS 2017), https://doi.org/10.1051/e3sconf/20183102014
  • [25] STAVARACHE C., VINATORUM M., MAEDY Y., Ultrasonic versus silent methylation of vegetable oils, Ultrason. Sonochem., 2006, 13, 401–407.
  • [26] THANGAVADIVEL K., MENGHARAJ M., MUDHOO A., NAIDU R., Degradation of organic pollutants using ultrasound, [In:] D. Chen, S.K. Sharma, A. Mudhoo (Eds.), Handbook on Applications of Ultrasound. Sononchemistry for Sustainability, Taylor and Francis, New York 2012, 447–470.
  • [27] HAMIDI H., MOHAMMADIAN E., JUNIN R., RAFATI R., The effect of ultrasonic waves on oil viscosity, Petrol. Sci. Techn., 2014, 32 (19), 2387–2395.
  • [28] HAMIDA T., BABADAGLI T., Effects of ultrasonic waves on immiscible and miscible displacement in porous media, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9–12 October 2005, https://doi.org/10.2118/95327-MS
  • [29] BOITSOVA A.T., KONDRASHEVA N.K., KRAPIVSKY E.I., Investigation of the effect of ultrasonic treatment on the high-viscosity oil from Yarega Field in Komi Republic (Russian Federation), J. Fund. Ren. En. Appl., 2015, 5 (2), 1–6.
  • [30] DOLLAH A., RASHID Z.Z., OTHMAN N.H., HUSSEIN S.N.C.M., YUSUF S.M., JAPPERI N.S., Effects of ultrasonic waves during water flooding for enhanced oil recovery, Int. J. Eng. Tech., 2018, 7 (3), 232–236.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-601b2d3b-6d34-444f-9e68-6fcc44929eb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.