PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of design and insertion analysis of a conical shaped polymeric based microneedle for transdermal drug delivery applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transportation of drug through parental routes are conventionally followed through hypodermic injection methods, where hypodermic injections are administered into the human skin for drug release. However, there are some issues observed when these hypodermic needles are being used, there are instances where the needle is being inserted leaves some needle fractures in the skin. To cater to the issue scientific researchers are voraciously working on designing and developing polymeric type of microneedle structures for various medical diagnostic applications for glucose monitoring, drug delivery, and other applications. This article presents the structural design of a conicalshaped polymeric microneedle and the insertion force while being pierced into the skin. Simulations at different insertion angles on microneedle are analyzed by arriving with total needle displacements in the process of insertion. The von mises stress is also analyzed with applied force at different insertion angles resulted in incremental change in stress exerted by the microneedle. The resultant stress is below the yield stress which makes the microneedle pierce into the skin without breakage.
Twórcy
  • Department of Electrical Electronics and Communication Engineering, School of Technology GITAM, Deemed to be University, Visakhapatnam, India
  • Department of Electrical Electronics and Communication Engineering, School of Technology GITAM, Deemed to be University, Visakhapatnam, India
Bibliografia
  • [1] K. Ahmed Saeed AL-Japairai, S. Mahmood, S. Hamed Almurisi, J. Reddy Venugopal, A. Rebhi Hilles, M. Azmana, S. Raman, Current trends in polymer microneedle for transdermal drug delivery, Int. J. Pharm. 587 (2020) 119673. https://doi.org/10.1016/j.ijpharm.2020.119673.
  • [2] K. Ita, Transdermal delivery of drugs with microneedles—potential and challenges, Pharmaceutics. 7 (2015) 90–105. https://doi.org/10.3390/pharmaceutics7030090.
  • [3] C. Pegoraro, S. MacNeil, G. Battaglia, Transdermal drug delivery: From micro to nano, Nanoscale. 4 (2012) 1881–1894. https://doi.org/10.1039/c2nr11606e.
  • [4] J.S. Kochhar, J.J.Y. Tan, Y.C. Kwang, L. Kang, Microneedles for Transdermal Drug Delivery, Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-030-15444-8.
  • [5] G. Ma, C. Wu, Microneedle, bio-microneedle and bio-inspired microneedle: A review, J. Control. Release. 251 (2017) 11–23. https://doi.org/10.1016/j.jconrel.2017.02.011.
  • [6] Y.C. Ryu, D.I. Kim, S.H. Kim, H.M.D. Wang, B.H. Hwang, Synergistic Transdermal Delivery of Biomacromolecules Using Sonophoresis after Microneedle Treatment, Biotechnol. Bioprocess Eng. 23 (2018) 286–292. https://doi.org/10.1007/s12257-018-0070-6.
  • [7] M.S. Lhernould, M. Deleers, A. Delchambre, Hollow polymer microneedles array resistance and insertion tests, Int. J. Pharm. 480 (2015) 8–15. https://doi.org/10.1016/j.ijpharm.2015.01.019.
  • [8] E.Z. Loizidou, N.T. Inoue, J. Ashton-Barnett, D.A. Barrow, C.J. Allender, Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis, Eur. J. Pharm. Biopharm. 107 (2016) 1–6. https://doi.org/10.1016/j.ejpb.2016.06.023.
  • [9] E. Larrañeta, R.E.M. Lutton, A.D. Woolfson, R.F. Donnelly, Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development, Mater. Sci. Eng. R Reports. 104 (2016) 1–32. https://doi.org/10.1016/j.mser.2016.03.001.
  • [10] S.P. Davis, M.R. Prausnitz, M.G. Allen, Fabrication and characterization of laser micromachined hollow microneedles, in: TRANSDUCERS 2003 - 12th Int. Conf. Solid-State Sensors, Actuators Microsystems, Dig. Tech. Pap., 2003: pp. 1435–1438. https://doi.org/10.1109/SENSOR.2003.1217045.
  • [11] M. Wang, L. Hu, C. Xu, Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing, Lab Chip. 17 (2017) 1373–1387. https://doi.org/10.1039/C7LC00016B.
  • [12] T. Tomono, A new way to control the internal structure of microneedles: a case of chitosan lactate, Mater. Today Chem. 13 (2019) 79–87. https://doi.org/10.1016/j.mtchem.2019.04.009.
  • [13] G. Yan, K.S. Warner, J. Zhang, S. Sharma, B.K. Gale, Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery, Int. J. Pharm. 391 (2010) 7–12. https://doi.org/10.1016/j.ijpharm.2010.02.007.
  • [14] Matec Web Conference Volume 192, Exploring innovative solutions for smart society, in: 4th Int. Conf. Eng. Appl. Sci. Technol. (ICEAST 2018), 2018.
  • [15] G. Du, X. Sun, Current Advances in Sustained Release Microneedles, Pharm. Front. 02 (2020) e11–e22. https://doi.org/10.1055/s-0040-1701435.
  • [16] Q. Wang, G. Yao, P. Dong, Z. Gong, G. Li, K. Zhang, C. Wu, Investigation on fabrication process of dissolving microneedle arrays to improve effective needle drug distribution, Eur. J. Pharm. Sci. 66 (2015) 148–156. https://doi.org/10.1016/j.ejps.2014.09.011.
  • [17] R.F. Donnelly, D.I.J. Morrow, T.R.R. Singh, K. Migalska, P.A. McCarron, C. O’Mahony, A.D. Woolfson, Processing difficulties and instability of carbohydrate microneedle arrays, Drug Dev. Ind. Pharm. 35 (2009) 1242–1254. https://doi.org/10.1080/03639040902882280.
  • [18] L.K. Vora, A.J. Courtenay, I.A. Tekko, E. Larrañeta, R.F. Donnelly, Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules, Int. J. Biol. Macromol. 146 (2020) 290–298. https://doi.org/10.1016/j.ijbiomac.2019.12.184.
  • [19] H. Juster, B. van der Aar, H. de Brouwer, A review on microfabrication of thermoplastic polymer-based microneedle arrays, Polym. Eng. Sci. 59 (2019) 877–890. https://doi.org/10.1002/pen.25078.
  • [20] K.J. Lee, M.J. Goudie, P. Tebon, W. Sun, Z. Luo, J. Lee, S. Zhang, K. Fetah, H.J. Kim, Y. Xue, M.A. Darabi, S. Ahadian, E. Sarikhani, W.H. Ryu, Z. Gu, P.S. Weiss, M.R. Dokmeci, N. Ashammakhi, A. Khademhosseini, Non-transdermal microneedles for advanced drug delivery, Adv. Drug Deliv. Rev. 165–166 (2020) 41–59. https://doi.org/10.1016/j.addr.2019.11.010.
  • [21] S.J. Moon, S.S. Lee, Micromech, Microeng. 15 (2009) 903–911.
  • [22] A.P. Sgouros, G. Kalosakas, K. Papagelis, C. Galiotis, Compressive response and buckling of Graphene nanoribbons, Sci. Rep. 8 (2018) 9593. https://doi.org/10.1038/s41598-018-27808-0.
  • [23] M.R. Maschmann, Q. Zhang, R. Wheeler, F. Du, L. Dai, J. Baur, In situ SEM observation of column-like and foam-like CNT array nanoindentation, ACS Appl. Mater. Interfaces. 3 (2011) 648–653. https://doi.org/10.1021/am101262g.
  • [24] E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald, Bulk Micromachined Titanium Microneedles, J. Microelectromechanical Syst. 16 (2007) 289–295. https://doi.org/10.1109/JMEMS.2007.892909.
  • [25] E.R. Parker, M.P. Rao, K.L. Turner, C.D. Meinhart, N.C. MacDonald, Bulk micromachined titanium microneedles, J. Microelectromechanical Syst. 16 (2007) 289–295. https://doi.org/10.1109/JMEMS.2007.892909.
  • [26] I.M. Shamsuddin, S. N, A. M, A. MK, Biodegradable polymers for sustainable environmental and economic development, MOJ Bioorganic Org. Chem. 2 (2018). https://doi.org/10.15406/mojboc.2018.02.00080.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-601ada89-4c38-43e3-ac7b-4feefeb51328
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.