PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algae Proliferation on Substrates Immersed in Biologically Treated Sewage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due fast biomass production, high affinity for N and P and possibilities to CO2 sequestration microalgae are currently in the spotlight, especially in renewable energy technologies sector. The majority of studies focus their attention on microalgae cultivation with respect to biomass production. Fuel produced from algal biomass can contribute to reducing consumption of conventional fossil fuels and be a remedy for a rising energy crisis and global warming induced by air pollution. Some authors opt for possibilities of using sewage as a nutrient medium in algae cultivation. Other scientists go one step further and present concepts to introduce microalgal systems as an integral part of wastewater treatment plants. High costs of different microalgal harvesting methods caused introduction of the idea of algae immobilization in a form of periphyton on artificial substrates. In the present study the attention has focused on possibilities of using waste materials as substrates to proliferation of periphyton in biologically treated sewage that contained certain amounts of nitrogen and phosphorus.
Rocznik
Strony
90--98
Opis fizyczny
Bibliogr. 18 poz., tab., rys.
Twórcy
autor
  • Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, 50-363 Wrocław, Grunwaldzki Square 24, Poland
autor
  • Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, 50-363 Wrocław, Grunwaldzki Square 24, Poland
  • Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, 50-363 Wrocław, Grunwaldzki Square 24, Poland
autor
  • Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, 50-363 Wrocław, Grunwaldzki Square 24, Poland
Bibliografia
  • 1. Bawiec A., Pawęska K., Jarząb A., 2016. Changes in the microbial composition of municipal wastewater treated in biological processes, Journal of Ecological Engineering, 17(3), 41–46.
  • 2. Bawiec A., Pawęska K., Pulikowski., 2016. Seasonal changes in the reduction of biogenic compounds in wastewater treatment plants based on hydroponic technology, Journal of Ecological Engineering, 17(2), 128–134.
  • 3. Boelee N.C., Temmink H., Janssen M., Buisman C.J.N., Wijffels R.H., 2012. Scenario Analysis of Nutrient Removal from Municipal Wastewater by Microalgal Biofilms, Water, 4(2), 460–473.
  • 4. Boelee N.C., Temmink H., Janssen M., Buisman C.J.N., Wijffels R.H., 2011. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms, Water Research, 45(18), 5925–5933.
  • 5. Dębowski M., Zieliński M., Krzemieniewski M., Dudek M., Grala A., 2013. Możliwość namnażania biomasy glonów na bazie odcieku pochodzącego z odwadniania osadów pofermentacyjnych, Rocznik Ochrona Środowiska, Vol. 15, 1612–1622.
  • 6. Hammes F., Verstraete W., 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation, Environmental Science & Bio/Technology, Vol. 1(1), 3–7.
  • 7. Karło A., Ziembińska A., Surmacz-Górska J., 2013. Glony na oczyszczalni ścieków, Technologia wody, 2(22), 10–13.
  • 8. Kozieł W., Włodarczyk T., 2011. Glony-Produkcja Biomasy, Acta Agrophysica, 17(1), 105–116.
  • 9. Kloc J., Mendoza González I., 2012. The Study of Biological Wastewater Treatment through Biofilm Development on Synthetic Material vs. Membranes, Worcester Polytechnic Institute Report, 1–72.
  • 10. Krzemieniewski M., Dębowski M., Zieliński M., 2009 Glony jako alternatywa dla lądowych roślin energetycznych, Czysta Energia, Vol. 9, 25–27.
  • 11. Kwietniewska E., Tys J., Krzemińska I., Kozieł W., 2012. Microalgae-cultivation and application of biomass as a source of energy: a review, Acta Agrophysica Monographiae, Vol. 2, 1–108.
  • 12. Łągiewka W., 1994. Zastosowanie biostruktur do oczyszczania wód powierzchniowych i ścieków, Ochrona Środowiska, Vol. 3–4, 49–52.
  • 13. Noga T., Kochman N., Peszek Ł., Stanek-Tarkowska J., Pajączek A., 2014. Diatoms (bacillariophyceae) in rivers and streams and on cultivated soils of the podkarpacie region in the years 2007–2011, Journal of Ecological Engineering, 15(1), 6–25.
  • 14. Oilgae Report – Academic Edition. 2009.
  • 15. Prajapati S.K., Kaushik P., Malik A., Vijay V.K., 2013. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges, Biotechnology Advances, 31(8), 1408–1425.
  • 16. Rawat I., Ranjith Kumar R., Mutanda T., Bux F., 2011. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Applied Energy, 88(11), 3411–3424.
  • 17. Rahaman M.S.A, Cheng L-H., Xu X-H., Zhang L., Chen H-L., 2011. A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes, Renewable and Sustainable Energy Reviews, 15(8), 4002–4012.
  • 18. Szlauer-Łukaszewska A., 2007. Succession of Periphyton Developing on Artificial Substrate Immersed in Polysaprobic Wastewater Reservoir, Polish J. of Environ. Stud. 16(5), 753–762.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-601738ac-bd51-4e4a-9c0b-c5a5047eb65a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.