PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Influence of the Heavy Metals Content on the Possibility to Use the Waters from selected Strzelin Quarry Lakes for Agricultural Irrigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the evaluation of the influence of the heavy metals content in the water from selected Strzelin Quarry Lakes located in Central Europe on the possibility to use the water for irrigation. The guidelines provided by FAO and in PN-84/C-04635 were the basis of the evaluation. The water pH ranged from 7.1–9.0, on average 7.8. The zinc content was in the range from 0.40–29.00 µg•dm-3, on the average 14.40 µg•dm-3, while the content of copper ranged from 0.00–50.10 µg•dm-3, on average 21.13 µg•dm-3. The cadmium content fell into the range from 0.00–5.50 µg•dm-3, on the average 0.83 µg•dm-3, and the lead content ranged from 0.00–18.10 µg•dm-3, on average 3.16 µg•dm-3. The chromium content ranged from 0.00–21.00 µg•dm-3, on average 4.26 µg•dm-3 and, finally, the content of nickel ranged from 0.00–39.80 µg•dm-3, on average 6.70 µg•dm-3. The values of the analysed heavy metals were similar to the concentrations noted in natural lakes and artificial water reservoirs. As far as the heavy metal content is concerned, the water from the selected Strzelin Quarry Lakes met the requirements that allow using it for the purposes of agricultural irrigation.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Institute of Landscape Architecture, ul. Grunwaldzka 55, 50-357 Wrocław, Poland
  • PhD Student, Wrocław University of Environmental and Life Sciences, Institute of Landscape Architecture, ul. Grunwaldzka 55, 50-357 Wrocław, Poland
Bibliografia
  • 1. Avila-Pérez P., Balcázar M., Zarazúa-Ortega G., Barceló-Quintal I., Dı́az-Delgado C. 1999. Heavy metal concentrations in water and bottom sediments of a Mexican reservoir. Science of The Total Environment, 234(1–3), 185–196.
  • 2. Axler R., Yokom S., Tikkanen C., McDonald M., Runke H., Wilcox D., Cady B. 1998. Restoration of a Mine Pit Lake from Aquacultural Nutrient Enrichment. Restoration Ecology, 6(1), 1–19. DOI: 10.1046/j.1526-100x.1998.00612.x.
  • 3. Ayers R.S. and Westcott D.W. 1985. Water quality for agriculture, FAO irrigation and drainage paper 29. Rev. 1. Food and Agriculture Organization of the United Nations, Rome.
  • 4. Castendyk D.N., Mauk J.L., Webster J.G. 2005. A mineral quantification method for wall rocks at open pit mines, and application to the Martha Au–Ag mine, Waihi, New Zealand. Applied Geochemistry, 20, 135–156.
  • 5. Chudzik W. 2012. The process of mined land reclamation in natural aggregate quarries exemplified by the sand and gravel quarry Dębina Łętowska. AGH Journal of Mining and Geoengineering, 36(1), 89–96.
  • 6. Czerniawska-Kusza I., Brożonowicz A. 2014. Zoobenthos in post-exploitation reservoirs of marls and limestone in Opole Silesia. Polish Journal of Natural Sciences, 29(4), 307–318.
  • 7. Denimal S., Bertrand C., Mudry J., Paquette Y., Hochart M., Steinmann M. 2005. Evolution of the aqueous geochemistry of mine pit lakes –Blanzy–Montceau-les-Mines coal basin (Massif Central, France): origin of sulfate contents, effects of stratification on water quality. Applied Geochemistry, 20, 825–839.
  • 8. Domashenko, Y., and Vasilyev, S. 2018. Agroecological Substantiation for the Use of Treated Wastewater for Irrigation of Agricultural Land. Journal of Ecological Engineering, 19(1), 48-54. https://doi.org/10.12911/22998993/79567.
  • 9. Doupé R.G., Lymbery A.J. 2005. Environmental risks associated with beneficial end uses of mine lakes in Southwestern Australia. Mine Water and the Environment, 24(3), 134–138.
  • 10. Doyle, G.A., Runnells D.D. 1997. Physical limnology of existing mine pit lakes. Mining Engineering, 49, 76–80.
  • 11. EEA Report No 2/2009. Water resources across Europe – confronting water scarcity and drought. Luxembourg: Office for Official Publications of the European Communities, 2009. DOI 10.2800/16803.
  • 12. Ejsmont-Karabin J. 1995. Rotifer occurrence in relation to age, depth and trophic state of quarry lakes. Hydrobiologia, 313/314, 21–28.
  • 13. Elzwayie, A., Afan, H.A., Allawi, M.F., El-Shafie A. 2017. Heavy metal monitoring, analysis and prediction in lakes and rivers: state of the art. Environ Sci Pollut Res, 24,12104–12117. DOI 10.1007/s11356-017-8715-0.
  • 14. Frankowski, P., Zbierska, J. 2015. Ocena jakości wody, potencjału ekologicznego małych zbiorników wodnych odbudowanych w krajobrazie rolniczym Wielkopolski. Nauka Przyr. Technol., 9, 1, #7. DOI: 10.17306/J.NPT.2015.1.7.
  • 15. Galas J. 2003. Limnological Study on a Lake Formed in a Limestone Quarry (Kraków, Poland). I. Water Chemistry. Polish Journal of Environmental Studies, 12(3), 297–300.
  • 16. Grünewald U. 2001. Water resources management in river catchments influenced by lignite mining. Ecological Engineering, 17,143–152.
  • 17. GUS 2019: Ochrona Środowiska 2019, Warszawa 2019.
  • 18. Gwoździński K., Mazur J., Pieniążek A. 2014. Concentrations of metals in water of unmonitored lakes near a landscape park. Pol. J. Environ. Stud. 23(4), 1317–1321.
  • 19. Hinwood A. L., Heyworth J., Tanner H., McCullough C. 2012. Recreational use of acidic pit lakes-human health considerations for post closure planning. Journal of Water Resource and Protection, 4, 1061–1070.
  • 20. Jawecki B. 2017. Rola kamieniołomów w kształtowaniu krajobrazu na przykładzie ziemi strzelińskiej, Monografie Uniwersytet Przyrodniczy we Wrocławiu vol. 205. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, p. 268.
  • 21. Jawecki B. 2019. Kamień w architekturze i budownictwie ziemi strzelińskiej, Monografie Uniwersytet Przyrodniczy we Wrocławiu, vol. 222. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, p. 170.
  • 22. Jawecki B., Dąbek P.B., Pawęska K., Wei X. 2018. Estimating Water Retention in Post-mining Excavations Using LiDAR ALS Data for the Strzelin Quarry, in Lower Silesia. Mine Water and the Environment, 37(4), 744–753. https://doi.org/10.1007/s10230-018-0526-0.
  • 23. Jawecki B., Kowalczyk T, Feng Y. 2019a. The evaluation of the possibility to use the water from quarry lakes for irrigation. J. Ecol. Eng. 20(9), 188–201, https://doi.org/10.12911/22998993/112490.
  • 24. Jawecki B., Mirski J. 2018. Wstępna ocena zawartości biogenów w wodach zalanych nieczynnych kamieniołomów położonych na terenach wiejskich (Preliminary evaluation of nutrients concentration in quarry lakes located on the rural areas). Inżynieria Ekologiczna, (Ecological Engineering) 19(6), 1–13, https://doi.org/10.12912/23920629/94957.
  • 25. Jawecki B., Szewrański S., Stodolak R., Wang Z. 2019b. The use of digital terrain models to estimate the pace of filling the pit of a Central European Granite Quarry with water Water, 11(11), 2298, DOI:10.3390/w11112298.
  • 26. Journal of Laws 2019.2149. Rozporządzenie Ministra Gospodarki Morskiej, Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego, stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych, Dz.U. 2019 poz. 2149.
  • 27. Kaniszewski S., Treder W. 2018. Jakość wody do nawadniania, fertygacji, metody uzdatniania. [In] Walczak, J. (ed.) Ograniczenie zanieczyszczenia azotem pochodzenia rolniczego metodą poprawy jakości wód. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, Warszawa 2018.
  • 28. Karadede H., Ünlü E. 2000. Concentrations of some heavy metals in water, sediment and species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41, 1371–1376.
  • 29. Klapper H., Geller W. 2001. Water quality management of mining lakes – a new field of applied hydrobiology. Acta hydrochim. hydrobiol. 29(6–7), 363–374.
  • 30. Kleeberg A., Grüneberg B. 2005. Phosphorus mobility in sediments of acid mining lakes, Lusatia, Germany. Ecological Engineering, 24, 89–100.
  • 31. Kołodziejczyk U. 2009. Hydrological, geological and geochemical conditions determining reclamation of post – mine land in the region of Łęknica. Gospodarka Surowcami Mineralnymi, 25(3), 190–201.
  • 32. Kumar N.R., McCullough C.D. Lund M.A., Larranaga S.A. 2016. Assessment of factors limiting algal growth in acidic pit lakes – a case study from Western Australia, Australia. Environmental Science and Pollution Research, 23, 5915–5924. DOI 10.1007/s11356-015-5829-0
  • 33. Kumar R. N., McCullough C. D., Lund M. A. 2009. Water Resources in Australian Mine Pit Lakes. Mining Technology, 118(3-4), 204–211. DOI:10.1179/174328610X12682159815028.
  • 34. Łabędzki L. 2016. Actions and measures for mitigation drought and water scarcity in agriculture. Journal of Water and Land Development, 29(IV– VI), 3–10. DOI: 10.1515/jwld-2016-0007.
  • 35. Lykhovyd, P. V., Lavrenko, S., Lavrenko, N., Dementiieva, O. 2019. Agro-Environmental Evaluation of Irrigation Water from Different Sources, Together with Drainage and Escape Water of Rice Irrigation Systems, According to its Impact on Maize. Journal of Ecological Engineering, 20(2), 1–7. https://doi.org/10.12911/22998993/94916.
  • 36. Mayne C.D. 1994. The Limnology of Three Limestone Rock Quarries in East-Central Nebraska and Western Iowa. Transactions of the Nebraska Academy of Sciences, 21, 1–7.
  • 37. Malczewska B., Czaban S., Jawecki B. 2018. Occurrence of iron, manganese, and selected trace elements in water from household wells exposed to the impact of a mining area. J. Elem., 23(4), 1319–1329. DOI: 10.5601/jelem.2017.22.4.1547.
  • 38. McCullough C. D. 2008. Approaches to remediation of acid mine drainage water in pit lakes. International Journal of Mining, Reclamation and Environment, 22(2), 105–119.
  • 39. McCullough C.D., Lund M.A. 2006. Opportunities for sustainable mining pit lakes in Australia. Mine Water and the Environment, 25, 220–226.
  • 40. Molenda T. 2006. Górnicze środowiska akwatyczne – obiekty obserwacji procesów hydrologicznobiologicznych. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 117(32), 239–250.
  • 41. Nixdorf B., Lessmann D., Deneke R. 2005. Mining lakes in a disturbed landscape: Application of the EC Water Framework Directive and future management strategies. Ecological Engineering, 24, 67–73.
  • 42. Park, D.M., S.A. White, L.B. McCarty and N.A. Menchyk. 2014. Interpreting irrigation water quality reports. Clemson University Cooperative Extension. CU-14-700.
  • 43. Patro M., Zubala T. 2012. Possibilities of shaping the water retention in agricultural landscape. Teka Kom. Ochr. Kszt. Środ. Przyr. – OL PAN, 9, 143–152.
  • 44. Pertsemli E, Voutsa D 2007. Distribution of heavy metals in lakes doirani and kerkini, northern Greece. J Hazard Mater, 148, 529–537.
  • 45. Piotrowski S. 1997. Zawartość metali ciężkich w wybranych elementach ekosystemu jeziora Dąbie (NW Polska). Przegląd Geologiczny, 45(6), 619–621.
  • 46. PN-84/C-04635. Woda do nawadniania roślin na użytkach rolnych oraz do ich opryskiwania chemicznymi środkami ochrony roślin.
  • 47. Puczyńska I., Skrzypski J. 2009. Integracja działań biologicznych, technicznych jako podstawa intensyfikacji procesów samooczyszczania się zbiorników zaporowych (na przykładzie Zbiornika Sulejowskiego). Ecological Chemistry and Engineering S, 16(S2), 221–235.
  • 48. Ramstedt M., Carlsson E., Lövgren L. 2003. Aqueous geochemistry in the Udden pit lake, northern Sweden. Applied Geochemistry, 18, 97–108.
  • 49. Ravazzani G., Giudici, I., Schmidt, C., and Mancini, M. 2011. Evaluating the Potential of Quarry Lakes for Supplemental Irrigation. Journal of Irrigation and Drainage Engineering 137(80), 564–571. DOI. 10.1061/(ASCE)IR.1943-4774.0000321.
  • 50. Rosińska A., Dąbrowska L., 2011. PCB, metale ciężkie w wodzie, osadach dennych zbiornika Kozłowa Góra. Archives of Environmental Protection, 37(4), 61–72.
  • 51. Schultze M., Pokrandt K-H., Hille W. 2010. Pit lakes of the Central German lignite mining district: Creation, morphometry and water quality aspects. Limnologica, 40(2), 148-155. http://dx.doi.org/10.1016/j.limno.2009.11.006.
  • 52. Singleton V.L., Jacob B., Feeney M.T. Little J.C. 2013. Modeling a proposed quarry reservoir for raw water storage in Atlanta, Georgia. Journal of Environmental Engineering, 139(1), 70–78. DOI: 10.1061/(ASCE)EE.1943-7870.0000582.
  • 53. Stottmeister U., Glässer W., Klapper H., Weißbrodt E., Eccarius B., Kennedy C., Schultze M., Wendt-Potthoff K., Frömmichen R., Schreck P., Strauch G. 1999. Strategies for Remediation of Former Opencast Mining Areas in Eastern Germany. In: Azcue J.M. (Ed.) Environmental Impacts of Mining Activities. Environmental Science. Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-59891-3_16.
  • 54. Tarjuelo J.M., De-Juan J.A., Moreno M.A., Ortega J.F. 2010. Review. Water resources deficit andwater engineering. Span J Agric Res, 8, 102–121.
  • 55. Treder W. 2016. Systemy nawadniana upraw warzywnych. Tradycyjna, integrowana produkcja warzyw, innowacyjne metody ich przechowywania. TRAFOON project is funded by the European Community’s Seventh Framework Programme (FP7/20072013) under grant agreement no. 613912. https://www.trafoon.org/sites/trafoon.org/files/download/890/boguchwala_waldemar_treder_201604.pdf (dostęp 2019-07-20).
  • 56. Vukosav P., Mlakar M., Cukrov N., Kwokal Ž., Pižeta I., Pavlus N., Špoljarić I., Vurnek M., Brozinčević A., Omanović D. 2014. Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia). Environ Sci Pollut Res, 21(5), 3826–3839. https://doi.org/10.1007/s11356-013-2377-3.
  • 57. Walczykiewicz T. 2014. Scenarios of Water Resources Development in Poland up to 2030. Water Resources, 41(6), 763–773. DOI: 10.1134/S0097807814060219.
  • 58. Wiejaczka Ł. 2011. Wpływ zbiornika Klimkówka na abiotyczne elementy środowiska przyrodniczego w wolnie Ropy. Prace geograficzne 229, IGiPZ PAN, Warszawa.
  • 59. Wojtkowska M. 2014. Metale ciężkie w wodzie, osadach, roślinach Jeziora Zegrzyńskiego (Heavy metals in water, sediments and plants of the Zegrzyński Lake). Progress in Plant Protection, 54 (1), 5–101. DOI: http://dx.doi.org/10.14199/ppp-2014-017.
  • 60. Zeng J., Yang L. Y., Chen X., Chuai X., Wu Q. L. 2012. Spatial distribution and seasonal variation of heavy metals in water and sediments of Taihu Lake. Pol. J. Environ. Stud. 21(5), 1489–1496.
  • 61. Zeng J., Yang L. Y., Chuai X. M., Chen X. F., Zhao H. Y., Wu Q. L. 2013. Comparison of metal(loid) concentrations in water, sediments and fish from two large shallow lakes. Int. J. Environ. Sci. Technol. 10, 1209–1218. DOI 10.1007/s13762-013-0246-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6013f2d4-4a54-4848-b0a5-eeaf24bb2869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.