Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Environmental Assessment of Construction Products - Challenges, Priorities, and Needs from Producers’ Perspective. A Review
Języki publikacji
Abstrakty
W artykule przedstawiono aktualny stan wiedzy w zakresie oceny oddziaływania środowiskowego wyrobów budowlanych. Analizę wykonano w celu zbadania możliwości rzetelnej oceny i weryfikacji oddziaływania wyrobów budowlanych na środowisko przez producenta w związku z planowanym wprowadzeniem w UE obowiązkowej oceny środowiskowej. Wyniki systematycznego przeglądu literatury dla słów kluczowych niniejszego artykułu wskazały wiele różnych problemów i niedoskonałości w dotychczas funkcjonującym modelu oceny wykorzystującym analizę cyklu życia wyrobu, wśród których najważniejszą jest nieporównywalność uzyskiwanych wyników będącą kluczową kwestią związaną z wiarygodnością producenta. Analiza przeglądu literatury wskazała, że wdrożenie w krajach UE nowego, obowiązkowego modelu oceny oddziaływania wyrobów budowlanych na środowisko będzie wyzwaniem dla wszystkich uczestników rynku. Wydaje się też oczywistym, że racjonalna realizacja oceny środowiskowej wyrobów budowlanych będzie trudna oraz wymagać będzie znacznie więcej pracy i czasu niż planuje to Komisja Europejska. Porównanie wyników niniejszego przeglądu literatury z założeniami nowego unijnego modelu oceny środowiskowej wyrobów budowlanych wskazuje także na brak transferu wiedzy z nauki do administracji publicznej, co negatywnie wpływa na racjonalność samego procesu decyzyjnego. W świetle uzyskanych wyników przeglądu literatury można stwierdzić, że jedynym rozsądnym rozwiązaniem wydaje się być tworzenie sektorowych deklaracji środowiskowych. Przyjęcie takiego rozwiązania pozwoli producentom wyrobów budowlanych zracjonalizować wydatki związane z ich opracowywaniem oraz uniknąć chaosu, jaki może powstać w sytuacji gdy szczegółowe dane dotyczące oddziaływania środowiskowego materiału są nieporównywalne.
The article presents the current state of knowledge in assessing the environmental impact of construction products. The analysis was carried out to examine the possibility of reliable assessment and verification of the environmental impact of construction products by the manufacturer in connection with the planned introduction of mandatory environmental assessment in the EU. The results of a systematic literature review for the keywords of this article indicated many different problems and imperfections in the existing assessment model using product life cycle analysis, among which the most important is the incomparability of the results obtained, which is a crucial issue related to the manufacturer’s credibility. The literature review indicated that implementing a new, mandatory model for assessing the environmental impact of construction products in EU countries will be a challenge for all market participants. The rational implementation of the environmental assessment of construction products will be complex and require much more work and time than was planned by the European Commission. A comparison of the results of this literature review with the assumptions of the new EU model of environmental assessment of construction products also indicates the lack of knowledge transfer from science to public administration, negatively affecting the rationality of the decision-making process. In light of the literature review results, the only reasonable solution is to create sectoral environmental declarations. Adopting such a solution will allow manufacturers of construction products to rationalize the expenses related to their development and avoid the chaos that may arise when environmental impact data are incomparable.
Wydawca
Czasopismo
Rocznik
Tom
Strony
16--39
Opis fizyczny
Bibliogr. 116 poz., tab.
Twórcy
autor
- Research and Development Center, Atlas sp. z o.o., Lodz, Poland
Bibliografia
- 1. United Nations, The 17 Goals, United Nations Department of Economic and Social Affairs, New York, USA, (2015). https://sdgs.un.org/goals (accessed 15.01.2024).
- 2. United Nations, Global Sustainable Development Report 2023, Advance, Unedited Version, 14 June 2023, United Nations Department of Economic and Social Affairs, New York, USA, (2023). https://sdgs.un.org/sites/default/files/2023-06/Advance%20unedited%20GSDR%2014June2023.pdf (accessed 15.01.2024).
- 3. European Commission, EU “whole-of-government” approach, European Commission, Brussels, Belgium, (2023). https://commission.europa.eu/strategy-and-policy/sustainable-development-goals/eu-whole-government-approach_en (accessed 15.01.2024).
- 4. European Commission, The European Green Deal, European Commission, Brussels, Belgium, (2019). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed 15.01.2024).
- 5. J. Anderson, A. Moncaster, A. Using an analysis of concrete and cement EPD: Verification, selection, assessment, benchmarking and target setting. Acta Polytech. CTU Proc. 33, 20-26 (2022). https://doi.org/10.14311/APP.2022.33.0020
- 6. European Commission, Annexes to the Proposal for a Regulation of the European Parliament and the Council laying down harmonised conditions for marketing of construction products, amending Regulation (EU) 2019/1020 and repealing Regulation (EU) 305/2011, European Commission, Brussels, Belgium, (2022) https://ec.europa.eu/docsroom/documents/49315 (accessed 15.01.2024).
- 7. Regulation (EU) No 305/2011 of the European Parliament and of the Council. Brussels, Belgium. (2011). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011R0305 (accessed15.01.2024).
- 8. European Commission, Review of the Construction Products Regulation (CPR) – Survey on the Option Paper, April-August 2020 – results, European Commission, Brussels, Belgium, (2020). https://ec.europa.eu/docsroom/documents/43103 (accessed 15.01.2024).
- 9. European Parliament, European Parliament legislative resolution of 10 April 2024 on the proposal for a regulation of the European Parliament and of the Council laying down harmonised conditions for the marketing of construction products, amending Regulation (EU) 2019/1020 and repealing Regulation (EU) 305/2011, European Parliament, Strasbourg, France, (2024). https://www.europarl.europa.eu/doceo/document/TA-9-2024-0188_EN.html#title1 (accessed 30.04.2024).
- 10. S. Wall, Analiza propozycji dotyczącej nowego podejścia UE do harmonizacji technicznej warunków wprowadzania do obrotu wyrobów budowlanych. Mater. Bud. 609(5), 22-25 (2023). https://doi.org/10.15199/33.2023.05.06
- 11. M. Ćwiklicki, Methodological Aspects of Scoping Review. MPRA Paper 104370, University of Munich, Munich, Germany, (2020).
- 12. S. Sala, A. M. Amadei, A. Beylot, F. Ardente, The evolution of life cycle assessment in European policies over three decades. Int. J. Life Cycle Assess. 26, 2295-2314 (2021). https://doi.org/10.1007/s11367-021-01893-2
- 13. S. Barbhuiya, B. B. Das, Life Cycle Assessment of Construction Materials: Methodologies, Applications and Future Directions for Sustainable Decision-making. Case Stud. Constr. Mater. 19, e02326 (2023). https://doi.org/10.1016/j.cscm.2023.e02326
- 14. B. Bayram, K. Greiff, Life cycle assessment on construction and demolition waste recycling: A systematic review analyzing three important quality aspects. Int. J. Life Cycle Assess. 28, 967-989 (2023). https://doi.org/10.1007/s11367-023-02145-1
- 15. J. Michalak, Sustainability Assessment of Cementitious Ceramic Tile Adhesives. Buildings 13(5), 1326 (2023). https://doi.org/10.3390/buildings13051326
- 16. S. Czernik, B. Michałowski, J. Tomaszewska, J. Michalak, The influence of cement on the environmental performance of construction products on the example of cementitious adhesives-External Thermal Insulation Composite Systems [ETICS] components. Cem Wapno Beton 27(1), 14-31 (2022). https://doi.org/10.32047/cwb.2022.27.1.2
- 17. D. T. Doan, H. V. Tran, I. E. Aigwi, N. Naismith, A. Ghaffarianhoseini, A. GhaffarianHoseini, Green building rating systems: A critical comparison between LOTUS, LEED, and Green Mark. Environ. res. commun. 5, 075008 (2023). http://doi.org/10.1088/2515-7620/ace613
- 18. F. Abdelaal, B. H. Guo, D. Dowdell, Comparison of Green Building Rating Systems from LCA Perspective. IOP Conference Series: Earth and Environmental Science 1101(6), 062019 (2022). http://doi.org/10.1088/1755-1315/1101/6/062019
- 19. A. Hollberg, D. Kaushal, S. Basic, A. Galimshina, G. Habert, A data-driven parametric tool for under-specified LCA in the design phase. IOP Conference Series: Earth and Environmental Science 5882(5), 052018 (2020). http://doi.org/ 10.1088/1755-1315/588/5/052018
- 20. J. Li, T. Lützkendorf, M. Balouktsi, X. Bi, N. Alaux, T. P. Obrecht, A. Passer, Ch. Han, W. Yang, W. Identifying uncertainties in the whole life carbon assessment of buildings: Sources, types, and potential actions. Build Environt. 244, 110779 (2023). https://doi.org/10.1016/j.buildenv.2023.110779
- 21. K. Kanafani, R. K. Zimmermann, F. N. Rasmussen, H. Birgisdóttir, Early design stage building LCA using the LCAbyg tool: New strategies for bridging the data gap. IOP Conference Series: Earth and Environmental Science 323(1), 012117 (2019). http://doi.org/10.1088/1755-1315/323/1/012117
- 22. F. Prideaux, R. H. Crawford, K. Allacker, A. Stephan, Approaches for assessing embodied environmental effects during the building design process. IOP Conference Series: Earth and Environmental Science 1196(1), 012053 (2023). http://doi.org/10.1088/1755-1315/1196/1/012053
- 23. F. N. Rasmussen, T. Malmqvist, H. Birgisdóttir, Drivers, barriers and development needs for LCA in the Nordic building sector-a survey among professionals. IOP Conference Series: Earth and Environmental Science 588(3), 032022 (2020). http://doi.org/10.1088/1755-1315/588/3/032022
- 24. R. Almeida, L. Chaves, M. Silva, M. Carvalho, L. Caldas, Integration between BIM and EPDs: Evaluation of the main difficulties and proposal of a framework based on ISO 19650:2018. J. Build. Eng. 68, 106091 (2023). https://doi.org/10.1016/j.jobe.2023.106091
- 25. T. P. Lützkendorf, Product data and building assessment-flow of information. IOP Conference Series: Earth and Environmental Science 225(1), 012038 (2019). http://doi.org/10.1088/1755-1315/225/1/012038
- 26. J. G. Backes, L. Schmidt, J. Bielak, P. Del Rosario, M. Traverso, M. Claßen, Comparative Cradle-to-Grave Carbon Footprint of a CFRP-Grid Reinforced Concrete Façade Panel. Sustainability 15(15), 11548 (2023). https://doi.org/10.3390/su151511548
- 27. R. Andersen, K. Negendahl, Lifespan prediction of existing building typologies. J. Build. Eng. 65, 105696 (2023). https://doi.org/10.1016/j.jobe.2022.105696
- 28. A. G. Ross, K. Connolly, I. Rhoden, S. Vögele, Resource-use intensity and the labor market: More for less? Environ. Impact Assess. Rev. 102, 107173 (2023). https://doi.org/10.1016/j.eiar.2023.107173
- 29. K. U. Bletzinger, E. Oñate, R. Wüchner, C. Lázaro, Environmental product declaration (EPD) for the TENSOSky®-ETFE-System, 10th International Conference on Textile Composites and Inflatable Structures – Structural Membranes 2021, online, 13-15 September 2021.
- 30. B. M. Galindro, S. Welling, N. Bey, S. I. Olsen, S. R. Soares, S. O. Ryding, Making use of life cycle assessment and environmental product declarations: A survey with practitioners. J. Ind. Ecol. 24(5), 965-975 (2020). https://doi.org/10.1111/jiec.13007
- 31. V. De Laurentiis, A. Amadei, E. Sanyé-Mengual, S. Sala, Exploring alternative normalization approaches for life cycle assessment. Int. J. Life Cycle Assess. 28(10), 1382-1399 (2023). https://doi.org/10.1007/s11367-023-02188-4
- 32. B. Moins, D. Hernando, M. Buyle, A. Audenaert, Reviewing the variability in product category rules for asphalt pavements-A quantitative evaluation of methodological framework differences for environmental product declarations. J. Clean. Prod. 436, 140580 (2024). https://doi.org/10.1016/j.jclepro.2024.140580
- 33. R. K. Zimmermann, Z. Barjot, F. N. Rasmussen, T. Malmqvist, M. Kuittinen, H. Birgisdottir, GHG emissions from building renovation versus new-build: incentives from assessment methods. B&C 4(1), 274-291 (2023). https://doi.org/10.5334/bc.325
- 34. C. De Wolf, M. Cordella, N. Dodd, B. Byers, S. Donatello, Whole life cycle environmental impact assessment of buildings: Developing software tool and database support for the EU framework Level(s). Resour. Conserv. Recycl. 188, 106642 (2023). https://doi.org/10.1016/j.resconrec.2022.106642
- 35. T. Santos, J. Almeida, J. D. Silvestre, P. Faria, Life cycle assessment of mortars: A review on technical potential and drawbacks. Constr Build Mater 288, 123069 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123069
- 36. A. Hollberg, B. Kiss, M. Röck, B. Soust-Verdaguer, A. H. Wiberg, S. Lasvaux, A. Galimshina, G. Habert, Review of visualizing LCA results in the design process of buildings. Built Environ. 190, 107530 (2021). https://doi.org/10.1016/j.buildenv.2020.107530
- 37. T. Eickelkamp, Significance of fixed assets in life cycle assessments. J. Clean. Prod. 108, 97-108 (2015). https://doi.org/10.1016/j.jclepro.2015.03.075
- 38. E. Klint, G. Peters, Sharing is caring-the importance of capital goods when assessing environmental impacts from private and shared laundry systems in Sweden. The International Int. J. Life Cycle Assess. 26, 1085-1099 (2021). https://doi.org/10.1007/s11367-021-01890-5
- 39. European Committee for Standardization (CEN), EN 15804:2012+A2:2019 Sustainability of construction works-Environmental Product Declarations-Core rules for the product category of construction products. Brussels, Belgium, (2019).
- 40. European Committee for Standardization (CEN), EN 15978:2011 Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method product. Brussels, Belgium, (2011).
- 41. International Organization for Standardization (ISO), ISO 14040:2006 Environmental management – Life cycle analysis – Principles and framework. Geneva, Switzerland, (2006).
- 42. International Organization for Standardization (ISO), ISO 21930:2017 Sustainability in buildings and civil engineering works. Core rules for environmental product declarations of construction products and services. Geneva, Switzerland, (2017).
- 43. S. Lasvaux, G. Habert, B. Peuportier, J. Chevalier, Comparison of generic and product-specific Life Cycle Assessment databases: application to construction materials used in building LCA studies. Int. J. Life Cycle Assess. 20, 1473-1490 (2015). https://doi.org/10.1007/s11367-015-0938-z
- 44. N. Emami, J. Heinonen, B. Marteinsson, A. Säynäjoki, J. M. Junnonen, J. Laine, S. Junnila, A life cycle assessment of two residential buildings using two different LCA database-software combinations: Recognizing uniformities and inconsistencies. Buildings 9(1), 20 (2019). https://doi.org/10.3390/buildings9010020
- 45. S. Saxe, G. Guven, L. Pereira, A. Arrigoni, T. Opher, A. Roy, I. Arceo, S. Sampedro von Raesfeld, M. Duhamel, B. McCabe, D. K. Panesar, H. L. MacLean, I. D. Posen, Taxonomy of uncertainty in environmental life cycle assessment of infrastructure projects. Environ. Res. Lett. 15(8), 083003 (2020). https://doi.org/10.1088/1748-9326/ab85f8
- 46. O. Tokede, R. Rouwette, Problematic consequences of the inclusion of capital goods inventory data in Environmental Product Declarations. Int. J. Life Cycle Assess. 29(1), 1-24 (2024). https://doi.org/10.1007/s11367-023-02231-4
- 47. A. Pacana, D. Siwiec, L. Bednárová, J. Petrovský, Improving the Process of Product Design in a Phase of Life Cycle Assessment (LCA). Processes 11(9), 2579 (2023). https://doi.org/10.3390/pr11092579
- 48. B. Soust-Verdaguer, J. A. Gutiérrez, C. Llatas, Development of a Plug-In to Support Sustainability Assessment in the Decision-Making of a Building Envelope Refurbishment. Buildings 13(6), 1472 (2023). https://doi.org/10.3390/buildings13061472
- 49. J. Maibaum, M. Block, M. König, A. Wachsmann, BIM-based EPD adaptation in the context of ecological sustainability and municipal infrastructures. In Life-Cycle of Structures and Infrastructure Systems, F. Biondini, D. M. Frangopol, eds.; CRC Press, London, Great Britain, pp. 2329-2336 (2023).
- 50. F. Asdrubali, G. Grazieschi, M. Roncone, F. Thiebat, Carbonaro, C. Sustainability of building materials: Embodied energy and embodied carbon of masonry. Energies 16(4), 1846 (2023). https://doi.org/10.3390/en16041846
- 51. International Organization for Standardization (ISO), ISO 22057:2022 Sustainability in buildings and civil engineering works. Data templates for the use of environmental product declarations (EPDs) for construction products in building information modelling (BIM). Geneva, Switzerland, (2022).
- 52. European Committee for Standardization (CEN), EN ISO 22057:2022 Sustainability in buildings and civil engineering works. Data templates for the use of environmental product declarations (EPDs) for construction products in building information modelling (BIM). Brussels, Belgium, (2022).
- 53. Anderson, J.; Rønning, A. Using standards to maximize the benefit of digitization of construction product Environmental Product Declaration (EPD) to reduce Building Life Cycle Impacts. E3S Web of Conferences 349, 10003-10008 (2022). https://doi.org/10.1051/e3sconf/202234910003
- 54. A. R. Wilson, S. M. Serrano, K. J. Baker, H. B. Oqab, G. B. Dietrich, M. Vasile, T. Soares, L. Innocenti, From life cycle assessment of space systems to environmental communication and reporting. In Proceedings of the International Astronautical Congress, Dubai, UAE, vol. 1, pp. 1-22. 25-29 September 2021.
- 55. K. T. Gradin, A. Björklund, The common understanding of simplification approaches in published LCA studies-a review and mapping. Int. J. Life Cycle Assess. 26, 50-63 (2021). https://doi.org/10.1007/s11367-020-01843-4
- 56. S. Kiemel, C. Rietdorf, M. Schutzbach, R. Miehe, How to Simplify Life Cycle Assessment for Industrial Applications-A Comprehensive Review. Sustainability 14(23), 15704 (2022). https://doi.org/10.3390/su142315704
- 57. M. Douziech, G. Ravier, R. Jolivet, P. Pérez-López, I. Blanc, I. How Far Can Life Cycle Assessment Be Simplified? A protocol to generate simple and accurate models for the assessment of energy systems and its application to heat production from enhanced geothermal systems. Environ. Sci. Technol. 55(11), 7571 -7582 (2021). https://doi.org/10.1021/acs.est.0c06751
- 58. X. Zhou, S. Bai, X. Zhao, J. Yang, From full life cycle assessment to simplified life cycle assessment: A generic methodology applied to sludge treatment. Sci. Total Environ. 904, 167149 (2023). https://doi.org/10.1016/j.scitotenv.2023.167149
- 59. S. Aghasizadeh, A. Tabadkani, A. Hajirasouli, S. Banihashemi, Environmental and economic performance of prefabricated construction: A review. Environ. Impact Assess. Rev. 97, 106897 (2022). https://doi.org/10.1016/j.eiar.2022.106897
- 60. D. Božiček, Y. Almezeraani, M. Košir, Making sense of LCA results when evaluating multiple building designs-comparison of interpretation concepts. Build. Res. Inf. 1-19 (2023). https://doi.org/10.1080/09613218.2023.2236254
- 61. J. Harasymiuk, E. Szafranko, On the application of sustainable building materials in geodesy and civil engineering. Mater. Today Energy, 57, 701-704 (2022). https://doi.org/10.1016/j.matpr.2022.02.151
- 62. J. Michalak, B. Michałowski, Understanding of construction product assessment issues and sustainability among investors, architects, contractors, and sellers of construction products in Poland. Energies 14 (7), 1941 (2021). https://doi.org/10.3390/en14071941
- 63. J. Michalak, B. Michałowski, B. Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials. Sustainability 14 (5), 3042 (2022). https://doi.org/10.3390/su14053042
- 64. J. Tomaszewska, Polish transition towards circular economy: Materials management and implications for the construction sector. Materials 13, 5228 (2020). https://doi.org/10.3390/ma13225228
- 65. H. AzariJafari, A. Yahia, B. Amor, Assessing the individual and combined effects of uncertainty and variability sources in comparative LCA of pavements. Int. J. Life Cycle Assess. 23, 1888-1902 (2018). https://doi.org/10.1007/s11367-017-1400-1
- 66. Z. Barahmand, M. S. Eikeland, Life cycle assessment under uncertainty: A scoping review. World 3(3), 692-717 (2022). https://doi.org/10.3390/world3030039
- 67. H. AzariJafari, G. Guest, R. Kirchain, J. Gregory, B. Amor, Towards comparable environmental product declarations of construction materials: Insights from a probabilistic comparative LCA approach. Build. Environ 190, 107542 (2021). https://doi.org/10.1016/j.buildenv.2020.107542
- 68. M. L. Pannier, P. Schalbart, B. Peuportier, Dealing with uncertainties in comparative building life cycle assessment. Build. Environ 242, 110543 (2023). https://doi.org/10.1016/j.buildenv.2023.110543
- 69. N. Mrazovic, M. Fischer, M. Lepech, Uncertainty Source Analysis in LCA: Case Studies-3D Printed versus Conventionally Manufactured Building Components. J. Environ. Sustain. 19(2), 99 (2023). https://doi.org/10.18848/2325-1077/CGP/v19i02/99-117
- 70. L. C. Malabi Eberhardt, M. Kuittinen, T. Häkkinen, C. Moinel, S. Nibel, H. Birgisdottir, Carbon handprint – a review of potential climate benefits of buildings. Build. Res. Inf. 1-16 (2023). https://doi.org/10.1080/09613218.2023.2266020
- 71. M. S. Otero, T. Garnica, S. Montilla, M. Conde, J. A. Tenorio, Analysis of Sectoral Environmental Product Declarations as a Data Source for Life Cycle Assessment. Buildings 13(12), 3032 (2023). https://doi.org/10.3390/buildings13123032
- 72. F. Greer, P. Raftery, G. Brager, A. Horvath, A perspective on tools for assessing the building sector’s greenhouse gas emissions and beyond. Environ. res.: infrastruct. sustain. 3(4), 043001 (2023). https://doi.org/10.1088/2634-4505/ad064d
- 73. B. Rey-Álvarez, J. Silvestre, A. García-Martínez, B. Sánchez-Montañés, A comparative approach to evaluate the toxicity of building materials through life cycle assessment. Sci. Total Environ. 912, 168897 (2023). https://doi.org/10.1016/j.scitotenv.2023.168897
- 74. A. Säynäjoki, J. Heinonen, S. Junnila, A. Horvath, Can life-cycle assessment produce reliable policy guidelines in the building sector? Environ. Res. Lett. 12(1), 013001 (2017). https://doi.org/10.1088/1748-9326/aa54ee
- 75. T. Lützkendorf, LCA of building materials within the framework of the Construction Products Regulation (CPR) in Europe. ce/papers 5(5), 43-47 (2022). https://doi.org/10.1002/cepa.1878
- 76. J. Michalak, S. Czernik, M. Marcinek, B. Michałowski, Environmental burdens of external thermal insulation systems. expanded polystyrene vs. mineral wool: Case study from Poland. Sustainability 120(11), 4532 (2020). https://doi.org/10.3390/su12114532
- 77. E. Hoxha, N. Francart, B. Tozan, E. B. Stapel, S. R. B. Gummidi, H. Birgisdottir, Spatiotemporal tracking of building materials and their related environmental impacts. Sci. Total Environ. 912, 168853 (2024). https://doi.org/10.1016/j.scitotenv.2023.168853
- 78. J. Anderson, D. Jones, Real and apparent variations in embodied carbon impacts provided in EPD for construction products. In The Routledge Handbook of Embodied Carbon in the Built Environment, 1st ed.; R. Azari, A. Moncaster, eds.; Taylor & Francis: London, Great Britain, pp. 335-358 (2023).
- 79. M. Fabianova, A. Estokova, Environmental evaluation of family house materials impacts on climate change, land and water use, acidification and ecotoxicity. Front. environ. sci. 11, 1241397 (2023). https://doi.org/ 10.3389/fenvs.2023.1241397
- 80. L. Ciacci, I. Vassura, F. Catalano, A. Simoncelli, F. Moretti, F. Passarini, Sustainability in Building and Construction: LCA of 21 Mural Paints. Key Eng. Mater. 919, 227-235 (2022). https://doi.org/10.4028/p-yd1rz1
- 81. A. A. M. Ali, Comparative Life Cycle Assessment of Wall Painting Types in a New City Development: Impacts on Environment and Human Health. SVU-IJESA 5(1), 111-124 (2024). https://doi.org/10.21608/svusrc.2023.226588.1159
- 82. J. F. Baptista, S. Kokare, A. V. Francisco, R. Godina, D. Aelenei, A comparative life cycle assessment of ETICS and ventilated facade systems with timber cladding. Energy Build. 304, 113842 (2024). https://doi.org/10.1016/j.enbuild.2023.113842
- 83. F. Scalisi, Environmental product declarations for building materials: advantages, limits, developments. In Advances in Architecture, Engineering and Technology: Smart Techniques in Urban Planning & Technology, H. Altan et al., eds., Springer International Publishing, Cham, Switzerland, pp. 15-23 (2022). https://doi.org/10.1007/978-3-031-11232-4_2
- 84. F. B. Moré, B. M. Galindro, S. R. Soares, Assessing the completeness and comparability of environmental product declarations. J. Clean. Prod. 375, 133999 (2022). https://doi.org/10.1016/j.jclepro.2022.133999
- 85. D. Arslan, H. Mohammadpourkarbasi, S. Sharples, Sensitivity analysis of the impact of environmental product declaration values on whole life carbon assessment: A case study using expanded polystyrene insulation for the retrofit of a building in Turkiye. Build. Serv. Eng. Res. Technol. 45(2), 101-121 (2004). https://doi.org/10.1177/01436244231221396
- 86. M. R. M. Saade, G. Guest, B. Amor, Comparative whole building LCAs: How far are our expectations from the documented evidence? Build. Environ 167, 106449 (2020). https://doi.org/10.1016/j.buildenv.2019.106449
- 87. T. Mattinzioli, M. Sol-Sánchez, G. Martínez, M. Rubio-Gámez, A parametric study on the impact of open-source inventory variability and uncertainty for the life cycle assessment of road bituminous pavements. Int. J. Life Cycle Assess. 26, 916-935 (2021). https://doi.org/10.1007/s11367-021-01878-1
- 88. K. Goulouti, P. Padey, A. Galimshina, G. Habert, S. Lasvaux, Uncertainty of building elements’ service lives in building LCA & LCC: What matters? Build. Environ 183, 106904 (2020). https://doi.org/10.1016/j.buildenv.2020.106904
- 89. B. Michałowski, J. Michalak, Sustainability-oriented assessment of external thermal insulation composite systems: A case study from Poland. Cogent Engineering 8(1), 1943152 (2021). https://doi.org/10.1080/23311916.2021.1943152
- 90. J. Michalak, External Thermal Insulation Composite Systems (ETICS) from Industry and Academia Perspective. Sustainability 13(24), 13705 (2021). https://doi.org/10.3390/su132413705
- 91. M. Pedroso, J. D. Silvestre, I. Flores-Colen, M. G. Gomes, Environmental impact of wall multilayer coating systems containing airgel-based fiber-enhanced thermal renders, J. Build. Eng. 76, 107322 (2023). https://doi.org/10.1016/j.jobe.2023.107322
- 92. J. G. Backes, R. Hinkle-Johnson, M. Traverso, The Influence of the Functional Unit on the Comparability of Life Cycle Assessments in the Construction Sector: A Systematic Literature Review and Attempt at Unification for Reinforced Concrete. Case Stud. Constr. Mater. 18, e01966 (2023). https://doi.org/10.1016/j.cscm.2023.e01966
- 93. J. Pohl, V. Frick, M. Finkbeiner, T. Santarius, Assessing the environmental performance of ICT-based services: Does user behavior make all the difference? Sustain. Prod. Consum. 31, 828-838 (2022). https://doi.org/10.1016/j.spc.2022.04.003
- 94. S. Dijkstra-Silva, S. Schaltegger, P. Beske-Janssen, Understanding positive contributions to sustainability. A systematic review. J. Environ. Manag. 320, 115802 (2022). https://doi.org/10.1016/j.jenvman.2022.115802
- 95. J. H. Guillaume, S. Sojamo, M. Porkka, D. Gerten, M. Jalava, L. Lankoski, E. Lehikoinen, M. Lettenmeier, S. Pfister, K. Usva, Y. Wada, M. Kummu, Giving legs to handprint thinking: Foundations for evaluating the good we do. Earth’s futur. 8(6), e2019EF001422 (2020). https://doi.org/10.1029/2019EF001422
- 96. T. Pajula, S. Vatanen, K. Behm, K. Grönman, L. Lakanen, H. Kasurinen, R Soukka, Carbon handprint guide V. 2.0 Applicable for environmental handprint. VTT Technical Research Center of Finland, 2021. https://cris.vtt.fi/en/publications/carbon-handprint-guide-v-20-applicable-for-environmental-handprint
- 97. K. Behm, R. Husgafvel, C. Hohenthal, H. Pihkola, S. Vatanen, Carbon handprint - Communicating the good we to. VTT Technical Research Center of Finland. VTT-R-00452, 2016. https://publications.vtt.fi/julkaisut/muut/2016/VTT-R-00452-16.pdf
- 98. M. Ghanbari, Environmental Impact Assessment of Building Materials Using Life Cycle Assessment. JAESER 6(4), 11-22 (2023). https://doi.org/10.30564/jaeser.v6i4.5964
- 99. F. Schlegl, J. Gantner, R. Traunspurger, S. Albrecht, P. Leistner, P. LCA of buildings in Germany: Proposal for a future benchmark based on existing databases. Energy Build. 194, 342-350 (2019). https://doi.org/10.1016/j.enbuild.2019.04.038
- 100. A. Weniger, P. Del Rosario, J. G. Backes, M. Traverso, Consumer Behavior and Sustainability in the Construction Industry-Relevance of Sustainability-Related Criteria in Purchasing Decision. Buildings 13(3), 638 (2023). https://doi.org/10.3390/buildings13030638
- 101. European Commission, Special Eurobarometer 538 Climate Change – Report, European Commission, Brussels, Belgium, 2023, ISBN 978-92-68-05355-3, https://europa.eu/eurobarometer/surveys/detail/2954 (accessed 16.02.2024).
- 102. L. Munagala, N. Jothilakshmy, A Comparative Analysis of Rating Systems for Sustainability in Built Environment. IOP Conference Series: Earth and Environmental Science 1210(1), 012027 (2023). https://doi.org/10.1088/1755-1315/1210/1/012027
- 103. J. Anderson, Over 130,000 construction product EPD available globally, ConstructionLCA, https://constructionlca.co.uk/2023/03/01/over-130000-construction-product-epd-available-globally (25.02.2024).
- 104. J. Anderson, Construction LCA’s 2023 Guide to Environmental Product Declarations (EPD). Growth in numbers of Construction Product EPD to EN 15804, ConstructionLCA, https://infogram.com/constructionlcas-2023-guide-to-epd-1h0n25yvdgz7l6p?live (accessed 25.02.2024).
- 105. M. A. L. de Brito, E. A. da Silva, Environmental Product Declaration Approaches on the Brazilian Experiences: A Review. Environ. Manag. Sustain. Dev. 12(2), 9-29 (2023). https://doi.org/10.5296/emsd.v12i2.20787
- 106. M. S. R. Rocha, A. Caldeira-Pires, Environmental product declaration promotion in Brazil: SWOT analysis and strategies. J. Clean. Prod. 235, 1061-1072 (2019). https://doi.org/10.1016/j.jclepro.2019.06.266
- 107. M. Marzocchini, J. M. Echazarreta, V. Gulivart, M. L. Mathisen, Environmental Product Declarations worldwide: a case study in Argentina. Int. J. Life Cycle Assess. 1-12 (2023). https://doi.org/10.1007/s11367-023-02172-y
- 108. R. D. Schlanbusch, S. M. Fufa, T. Häkkinen, S. Vares, H. Birgisdottir, P. Ylmén, Experiences with LCA in the Nordic building industry-challenges, needs and solutions. Energy Procedia 96, 82-93 (2016). https://doi.org/10.1016/j.egypro.2016.09.106
- 109. L. Linkosalmi, H. Schwarzschachner, T. Valtonen, Harmonization of the Environmental Product Declarations for wood products. In Proceedings of the World Conference on Timber Engineering (WCTE 2023), A. Q. Nyrud, K. A. Malo, eds., pp. 4565-4570, Oslo, Norway, 19-22.06.2023. ISBN 9781713873273.
- 110. S. Toniolo, A. Mazzi, M. Simonetto, F. Zuliani, A. Scipioni, Mapping diffusion of Environmental Product Declarations released by European program operators. Sustain. Prod. Consum. 17, 85-94 (2019). https://doi.org/10.1016/j.spc.2018.09.004
- 111. M. Scherz, A. A. Wieser, A. Passer, H. Kreiner, Implementation of Life Cycle Assessment (LCA) in the Procurement Process of Buildings: A Systematic Literature Review. Sustainability 14(24), 16967 (2022). https://doi.org/10.3390/su142416967
- 112. S. Schaltegger, M. Csutora, Carbon accounting for sustainability and management. Status quo and challenges. J. Clean. Prod. 36, 1-16 (2012). https://doi.org/10.1016/j.jclepro.2012.06.024
- 113. R. C. Robinson, The Linguistic Challenge for Standards. Standards 2(4), 449-459 (2022). https://doi.org/10.3390/standards2040030
- 114. Shashi, P. Centobelli, R. Cerchione, M. Ertz, E. Oropallo, What we learn is what we earn from sustainable and circular construction. J. Clean. Prod. 382, 135183 (2023). https://doi.org/10.1016/j.jclepro.2022.135183
- 115. F. Belizario-Silva, L. S. Oliveira, D. C. Reis, G. T. G. Pato, A. C. Marinho, C. M. Degani, R. L. Caldas, K. R. G. Punhaqui, S. A. Pacca, V. M. John, The Sidac system: Streamlining the assessment of the embodied energy and CO2 of Brazilian construction products. J. Clean. Prod. 421, 138461 (2023). https://doi.org/10.1016/j.jclepro.2023.138461
- 116. C. Mrad, L. Frölén Ribeiro, A Review of Europe’s Circular Economy in the Building Sector. Sustainability 14(21), 14211 (2022). https://doi.org/10.3390/su142114211
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-60102086-baf6-42c1-a539-6f261f8fd2f5