PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wizualizacja enzymów proteolitycznych za pomocą sond chemicznych oraz cytometrii masowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Visualization of proteolytic enzymes using mass cytometry : compatible chemical probes
Języki publikacji
EN
Abstrakty
EN
Proteolytic enzymes, also known as peptidases or proteases, are protein catalysts that are primarily responsible for the hydrolysis of a peptide (amide) bond in peptide and protein substrates. By selective hydrolysis of selected substrates, these enzymes control many physiologically important processes including programmed cell death, blood coagulation cascade, protein maturation, fibrinolysis and many others. On the other hand, however, the imbalance in proteases activity leads to the development of diseases, including cancer, neurodegenerative diseases and coronary diseases etc.. In recent decades there has been great progress in studying the biological functions of many proteolytic enzymes. These observations were made possible through the use of various research techniques including genomics, epigenomics and proteomics. However, a major limitation of these techniques is the lack of information about the exact catalytic activity of the enzymes. For this reason, chemical probes are the most convenient toll for functional investigation of proteolytic enzymes. According to the generally accepted convention, chemical probes are compounds that can detect the catalytic activity of proteolytic enzymes. In general, chemical-based probes (activity-based probes, ABPs) consist of three main components: (1) a reactive binding group that binds permanently to the enzyme active site, (2) a recognition sequence (usually a peptide), which is responsible for the selective binding of a given probe to an individual enzyme or group of enzymes, and (3) a tag, mainly a fluorophore, enabling for detection of the probe-enzyme complex. However, the current limitation of ABPs is that only up to four enzymes can be detected and visualized in parallel, which significantly impedes their application for multi-parametric analysis. To date, the detection of proteases with the use of ABPs was limited to individual enzymes being investigated one by one, thus the obtained picture was far from being complete. In this review we describe the development of a new type of enzyme ABPs, so called TOF-probes that are compatible with mass cytometry format. The application of metal isotopes instead of fluorophores, makes possible to significantly increase the number of enzymes, which can be simultaneously visualized using chemical probes. Mass cytometry is a revolutionary technology that adopts atomic mass spectrometry into flow cytometry applications. The excellence of this method is that each metal isotope (mostly from lanthanides) has its own peak on mass spectrum, which eliminates the problem of signal overlap, thus allows for monitoring of more than 40 parameters at single cell level.
Rocznik
Strony
1171--1191
Opis fizyczny
Bibliogr. 35 poz., rys., schem.
Twórcy
  • Genentech Inc. South San Francisco, USA
  • Katedra Chemii Biologicznej i Bioobrazowania, Wydział Chemiczny, Politechnika Wrocławska, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Polska
Bibliografia
  • [1] N.D. Rawlings, M. Waller, A. J. Barrett, A. Bateman, Nucleic Acids Res., 2014, 42, D503.
  • [2] M. Drag, G.S. Salvesen, Nat. Rev. Drug Discov., 2010, 9, 690.
  • [3] B. Turk, Nat. Rev. Drug Discov., 2006, 5, 785.
  • [4] X.S. Puente, L.M. Sanchez, C.M. Overall, C. Lopez-Otin, Nat. Rev. Genet., 2003, 4, 544.
  • [5] I. Schechter, A. Berger, Biochem. Biophys. Res. Commun., 1967, 27, 157.
  • [6] J. Zhou, S. Li, K.K. Leung, B. O’Donovan, J. Y. Zou, J.L. DeRisi, J. Wells, Proc. Natl. Acad. Sci. USA, 2020, 117, 25464.
  • [7] G.P. McStay, G.S. Salvesen, D.R. Green, Cell Death Differ., 2007, 15, 322.
  • [8] Y. Choe, F. Leonetti, D.C. Greenbaum, F. Lecaille, M. Bogyo, D. Bromme, J.A. Ellman, Ch. Craik, J. Biol Chem., 2006, 281, 12824.
  • [9] M. Poreba, M. Drag, Curr. Med. Chem., 2010, 17, 3968.
  • [10] B.I. Ratnikov, P. Cieplak, A.G. Remacle, E. Nguyen, J.W. Smith, PLoS Comput. Biol., 2021, 17, e1008101.
  • [11] Poreba, G.S. Salvesen, M. Drag, Nat. Protoc., 2017, 12, 2189.
  • [12] J.S. Bond, J. Biol. Chem., 2019, 294, 1643.
  • [13] J.A. Joyce, A. Baruch, K. Chehade, N. Meyer-Morse, E. Giraudo, F.Y. Tsai, D. Greenbaum, J. Hager, M. Bogyo, D. Hanahan, Cancer Cell., 2004, 5, 443.
  • [14] L. Akkari, V. Gocheva, M.L. Quick, J.C. Kester, A.K. Spencer, A.L. Garfall, R.L. Bowman, J.A. Joyce, Genes Dev., 2016, 30, 220.
  • [15] N.A. Thornberry, T.A. Rano, E.P. Peterson, D.M. Rasper, T. Timkey, M. Garcia-Calvo, V.M. Houtzager, P.A. Nordstrom, S. Roy, J.P. Vaillancourt, K.T. Chapman, D.W. Nicholson, J. Biol. Chem., 1997, 272, 17907.
  • [16] M. Fonovic, M. Bogyo, Curr. Pharm. Des., 2007, 13, 253.
  • [17] M. Fonovic, M. Bogyo, Exp. Rev. Proteom., 2008, 5, 721.
  • [18] J. Harkness, B.W. Roper, J.A. Durant, H. Miller, Br. Med. J., 2960, 1, 1787.
  • [19] C.M. Kam, A.S. Abuelyaman, Z. Li, D. Hudig, J.C. Powers, Bioconjug. Chem., 1993, 4, 560.
  • [20] A. Saghatelian, N. Jessani, A. Joseph, M. Humphrey, B.F. Cravatt, Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 10000.
  • [21] Y. Liu, M.P. Patricelli, B.F. Cravatt, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 14694.
  • [22] L.E. Sanman, M. Bogyo, Ann. Rev. Biochem., 2014, 83, 249.
  • [23] P. Kasperkiewicz, Y. Altman, M. D’Angelo, G. S. Salvesen, M. Drag, J. Am. Chem. Soc., 2017, 139, 10115.
  • [24] M. Garland, J.J. Yim, M. Bogyo, Cell Chem. Biol., 2016, 23, 122.
  • [25] M. Bogyo, S. Verhelst, V. Bellingard-Dubouchaud, S. Toba, D. Greenbaum, Chem. Biol., 2000, 7, 27.
  • [26] M. Poreba, K. Groborz, W. Rut, M. Pore, S.J. Snipas, M. Vizovisek, B. Turk, P. Kuhn, M. Drag, G.S. Salvesen, J. Am. Chem. Soc., 2020, 142, 16704.
  • [27] K. Groborz, Rozprawa Doktorska, Politechnika Wrocławska, 2020, 1, 1.
  • [28] R.L. Siegel, K.D. Miller, A. Jemal, C.A. Cancer J. Clin., 2020, 70, 7.
  • [29] I. Pemberton, Conference Paper: VIII Simpar, 2016, 3, 50.
  • [30] D.R. Bandura, V.I. Baranov, O.I. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Vorobiev, J.E. Dick, S.D. Tanner, Anal. Chem., 2009, 81, 6813.
  • [31] S.C. Bendall, E.F.Simonds, P. Qiu, A.D. Amir el, P.O. Krutzik, R. Finck, R.V. Bruggner, R. Melamed, A. Trejo, O.I. Ornatsky, R.S. Balderas, S.K. Plevritis, K. Sachs, D. Pe'er, S.D. Tanner, G.P. Nolan, Science, 2011, 332, 687.
  • [32] J. Wagner, M.A. Rapsomaniki, S. Chevrier, T. Anzeneder, C. Langwieder, A. Dykgers, M. Rees, A. Ramaswamy, S. Muenst, S.D. Soysal, A. Jacobs, J. Windhager, K. Silina, M. van den Broek, K.J. Dedes, M. Rodriguez Martinez, W.P. Weber, B. Bodenmiller, Cell, 2019, 177, 1330.
  • [33] M. Poreba, R. Solberg, W. Rut, N.N. Lunde, P. Kasperkiewicz, S.J. Snipas, M. Mihelic, D. Turk, B. Turk, G.S. Salvesen, M. Drag, Cell Chem. Biol., 2016, 23, 1023.
  • [34] M. Poreba, W. Rut, M. Vizovisek, K. Groborz, P. Kasperkiewicz, D. Finlay, K. Vuori, D. Turk, B. Turk, G.S. Salvesen, M. Drag, Chem. Sci., 2018, 9, 2113.
  • [35] M. Poreba, K. Groborz, M. Vizovisek, M. Maruggi, D. Turk, B. Turk, G. Powis, M. Drag, G.S. Salvesen, Chem. Sci., 2019, 10, 8461.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-600f929e-8f53-4814-8a80-072f73b99f82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.