Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a fault-tolerant control scheme for a 2 DOF helicopter. The 2 DOF helicopter is a higher-order multi-input multi-output system featuring non-linearity, cross-coupling, and unstable behaviour. The impact of sensor, actuator, and component faults on such highly complex systems is enormous. This work employs sliding mode control, which is based on reaching and super-twisting laws, to handle the problem of fault control. Simulation tests are carried out to show the effectiveness of the algorithms. Various performance metrics are analyzed and the results show SMC based on super-twisting law provides better control with less chattering. The stability of the closed-loop system is mathematically assured, in the presence of faults, which is a key contribution of this research.
Czasopismo
Rocznik
Tom
Strony
359--381
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
- Department of Electronics and Instrumentation Engineering, Government College of Technology, Coimbatore, India
autor
- Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, India
Bibliografia
- [1] F. Chen, J. Niu and G. Jiang: Nonlinear fault-tolerant control for hypersonic flight vehicle with multi-sensor faults. IEEE Access, 33(6), (2018), 25427-25436. DOI: 10.1109/ACCESS.2018.2820008.
- [2] R. Czyba and L. Stajer: Dynamic Contraction Method approach to digital longitudinal aircraft flight controller design. Archives of Control Sciences, 29(1), (2019), 97-109. DOI: 10.24425/acs.2019.127525
- [3] U. Demirci and F. Kerestecioğlu: Fault tolerant control with re-configuring sliding-mode schemes. Turkish Journal of Electrical Engineering & Computer Sciences, 13(1), (2005), 175-188. DOI: 10.3906/elk-0410-2.
- [4] J. Jiang and X. Yu: Fault-tolerant control systems: A comparative study between active and passive approaches. Annual Reviews in Control, 36(1), (2012), 60-72. DOI: 10.1016/j.arcontrol.2012.03.005.
- [5] J. Jiang and X. Yu: Robust fault tolerant control with sensor faults for a four-rotor helicopter. International Journal of Advances in Engineering & Technology, 3(1), (2012), 1-13. DOI: 10.1155/2021/6672812.
- [6] J. Lan, R.J. Patton and X. Zhu: Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation. IET Control Theory & Applications, 11(14), (2017), 2232-2241. DOI: 10.1049/iet-cta.2016.1602.
- [7] T. Li, Y. Zhang and B.W. Gordon: Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 227(1), (2013), 12-23. DOI: 10.1177/0959651812455293.
- [8] S. Mallavalli and A. Fekih: A fault tolerant tracking control for a quadrotor UAV subject to simultaneous actuator faults and exogenous disturbances. International Journal of Control, 93(3), (2020), 655-668. DOI: 10.1080/00207179.2018.1484173.
- [9] R. Mei: Robust Control for the Suspension Cable System of the Unmanned Helicopter with Sensor Fault under Complex Environment. Complexity, (2021). DOI: 10.1155/2021/8869292.
- [10] A. Nasiri, S.K. Nguang, A. Swain and A. Akshya: Passive actuator fault tolerant control for a class of MIMO nonlinear systems with uncertainties. International Journal of Control, 92(3), (2019), 693-704. DOI: 10.1080/00207179.2017.1367102.
- [11] X. Qi, J. Qi, D. Theilliol, Y. Zhang, J. Han, D. Song and C. Hua: A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles. Journal of Intelligent & Robotic Systems, 73(1), (2014), 535-555. DOI: 10.1007/s10846-013-9954-z.
- [12] X. Qi, D. Theilliol, J. Qi, Y. Zhang, J. Han, D. Song, L. Wang and Y. Xia: Fault diagnosis and fault tolerant control methods for manned and unmanned helicopters: a literature review. 2013 Conference on Control and Fault-Tolerant Systems (SysTol), (2013), 132-139. DOI: 10.1109/SysTol.2013.6693906.
- [13] L. Qin, X. He, R. Yan and D. Zhou: Active fault-tolerant control for a quadrotor with sensor faults. Journal of Intelligent & Robotic Systems, 88(2), (2017), 449-467. DOI: 10.1007/s10846-017-0474-0.
- [14] Y. Qiwei and Y. Rui: Nonsingular terminal sliding mode based passive fault-tolerant control of a 3-DOF helicopter system. IFAC-PapersOnLine, 51(24), (2018), 1368-1372. DOI: 10.1016/j.ifacol.2018.09.556.
- [15] R. Singh and B. Bhushan: A novel fault classification-based fault-tolerant control for two degree of freedom helicopter systems. International Journal of Adaptive Control and Signal Processing, 34(8), (2020), 1080-1104. DOI: 10.1002/acs.3121.
- [16] J. Tan, Y. Fan, P. Yan, C. Wang and H. Feng: Sliding mode fault tolerant control for unmanned aerial vehicle with sensor and actuator faults. Sensors, 19(3), (2019), 643. DOI: 10.3390/s19030643.
- [17] I. Ullah and H. L. Pei: Sliding mode tracking control for unmanned helicopter using extended disturbance observer. Archives of Control Sciences, 29(1), (2019), 169-199. DOI: 10.24425/acs.2019.127530.
- [18] B. Wang and Y. Zhang: An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE Transactions on Industrial Electronics, 65(5), (2017), 4227-4236. DOI: 10.1109/TIE.2017.2772153.
- [19] X. Yu and J. Jiang: A survey of fault-tolerant controllers based on safety-related issues. Annual Reviews in Control, 39, (2015), 46-57. DOI: 10.1016/j.arcontrol.2015.03.004.
- [20] Y. Zhang, A. Chamseddine, C.A. Rabbath, B. W. Gordon, C-Y Su, S. Rakheja, C. Fulford, J. Apkarian and P. Gosselin: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. Journal of the Franklin Institute, 350(9), (2013), 2396-2422. DOI: 10.1016/j.jfranklin.2013.01.009.
- [21] Y. Zhang and J. Jiang: Bibliographical review on reconfigurable fault-tolerant control systems. Annual Reviews in Control, 32(2), (2008), 229-252. DOI: 10.1016/j.arcontrol.2008.03.008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-600e9b41-536f-4f29-bf7b-435ac8aaa771