Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Direct laser interference lithography in periodical treatment of biomaterials
Języki publikacji
Abstrakty
W artykule przedstawiono wyniki badań nowoczesnej technologii mikroobróbki laserowej biomateriałów opartej na wykorzystaniu interferencji impulsowych wiązek laserowych o dużej energii. Przeanalizowano wpływ polaryzacji promieniowania na formę wzorów w obrazie interferencyjnym. Eksperymentalnie wyznaczono wartości progów ablacji laserowej dla tytanu i warstw diamentopodobnych. W serii eksperymentów potwierdzono szczególne zalety metody bezpośredniej interferencyjnej litografii laserowej w periodycznej modyfikacji powierzchni dla uzyskania różnych jej topografii, włącznie ze strukturami hierarchicznymi, o różnym okresie i wymiarach wzorów. Opisano zastosowania tej technologii do kształtowania powierzchni materiałów wszczepialnych oraz rusztowań dla hodowli komórek i tkanek w bioinżynierii.
The paper presents the results of research on modern laser micromachining technology based on utilization of the interference field of high energy, pulse laser beams. The influence of radiation polarization on a pattern shape in an interference image has been analyzed theoretically. Values of laser ablation threshold for titanium and diamond-like coatings were determined experimentally. The particular advantages of the direct laser interference lithography method have been shown in a series of tests devoted to the periodical surface topography modification, including creation of hierarchical structures with different periods and feature dimensions. Another trial of tests has confirmed also the application potential of this technique in shaping of implant surfaces as well as preparation of scaffolds for cells and tissues culturing in bioengineering.
Czasopismo
Rocznik
Tom
Strony
31--53
Opis fizyczny
Bibliogr. 39 poz., il., rys., wykr.
Twórcy
autor
- Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
- Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
autor
- Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
- Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
- Instytut Metalurgii i Inżynierii Materiałowej PAN, 30-059 Kraków, ul. W. Reymonta 25
autor
- Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
- Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
- Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
- Wojskowa Akademia Techniczna, Instytut Optoelektroniki, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
autor
- Politechnika Warszawska, Wydział Inżynierii Materiałowej, 02-507 Warszawa, ul. Wołoska 141
Bibliografia
- [1] Ross A.M., Lahann J., Review: Surface engineering the cellular microenvironment via patterning and gradients, J. Polym. Sci. Pol. Phys., 51, 10, 2013, 775-794.
- [2] Jeon H.J., Simon C.G., Kim G.H., A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure, J. Biomed. Mater. Res. Part B, 102B, 7, 2014, 1580-1594.
- [3] Tian D., Song Y., Jiang L., Review: Patterning of controllable surface wettability for printing techniques, Chem. Soc. Rev., 42, 12, 2013, 5184-5209.
- [4] Gogolides E., Constantoudis V., Patsis G.P., Tserepi A., A review of line edge roughness and surface nanotexture resulting from patterning processes, Microelectron. Eng., 83, 4-9, 2006, 1067-1072.
- [5] Moon J.H, Small A., Yi G.R., Lee S.K., Chang W.S., Pine D.J., Yang S.M., Patterned polymer photonic crystals using soft lithography and holographic lithography, Synthetic Met., 148, 1, 2005, 99-102.
- [6] Chaudhery V., George S., Lu M., Pokhriyal A., Cunningham B.T., Review: Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence, Sensors, 13, 5, 2013, 5561-5584.
- [7] Chang T.L., Chen Z.C., Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices, Appl. Surf. Sci., 359, 2015, 543-549.
- [8] Kim H., Park C.S., Kang K.M., Hong M.H., Choi Y.J., Park H.H., The CO gas sensing properties of direct-patternable SnO2 films containing graphene or Ag nanoparticles, New J. Chem., 39, 3, 2015, 2256-2260.
- [9] Lei Y., Yang S., Wu M., Wilde G., Tutorial Review. Surface patterning using templates: concept, properties and device applications, Chem. Soc. Rev., 40, 3, 2011, 1247-1258.
- [10] Guo J., Nanoimprint Lithography: Methods and Material Requirements, Adv. Mater., 19, 4, 2007, 495-513.
- [11] Gittard S.D., Nara R.J., Laser direct writing of micro- and nano-scale medical devices, Expert Rev. Med. Devices, 7, 3, 2010, 343-356.
- [12] Rothschild M., Review Feature: Projection optical lithography, Mater. Today, 8, 2, 2005, 18-24.
- [13] Geissler M., Xia X., Patterning: Principles and some new developments, Adv. Mater., 16, 15, 2004, 1249-1269.
- [14] Lai N.D., Liang W.P., Lin J.H., Hsu C.C., Lin C.H., Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique, Opt. Express, 13, 23, 2005, 9605-9611.
- [15] Lasagni A., Mucklich F., FEM simulation of periodical local heating caused by laser interference metallurgy, J. Mater. Process. Techn., 209, 1, 2009, 202-209.
- [16] Lasagni A., Bieda M., Wetzig A., Roch T., Beyer E., Direct laser interference systems for the surface functionalization of powertrain components, Proc. Global Powertrain Congress 2011, Curran Associates, Inc. New York, 2011, 167-178.
- [17] Zhou Q., Yang W., He F., Stoian R., Hui R., Cheng G., Femtosecond multi-beam interference lithography based on dynamic wavefront engineering, Opt. Express, 21, 8, 2013, 9851-9861.
- [18] Marczak J., Rycyk A., Sarzyński A., Strzelec M., Kusiński J., Major R., Direct laser manufacturing of 1D and 2D micro- and submicro-scale periodic structures, Proc. SPIE, 8703, 2013, 87030F.
- [19] Marczak J., Kusiński J., Major R., Rycyk A., Sarzyński A., Strzelec M., Czyż K., Laser interference patterning of DLC layers for directed migration and growth of smooth muscle cell depositions, Opt. Appl., 44, 4, 2014, 575-586.
- [20] Aktag A., Two-to-Four Coherent Beams Interference Patterns of Non-Orthogonal Planes, Turk., J. Phys., 32, 5, 2008, 139-143.
- [21] Liu Y., Liu S., Zhang X., Fabrication of three-dimensional photonic crystals with two-beam holographic lithography, Appl. Optics, 45, 3, 2006, 480-483.
- [22] Griffiths D.J. Introduction to electrodynamics, Upper Saddle River, New Jersey, USA,1999.
- [23] Editors: Gerhard C., Wieneke S., Viöl W., Laser Ablation: Fundamentals, Methods and Applications, Nova Science Publishers, New York 2015.
- [24] Lednev V.N. et al., Laser ablation of polished and nanostructured titanium surfaces by nanosecond laser pulses, Spectrochim. Acta B 88, 2013, 15-19 (technical notes).
- [25] Tang G., Abdolvand A., Structuring of titanium using a nanosecond-pulsed Nd:YVO4 laser at 1064 nm, Int. J. Adv. Manuf. Technol. 66, 9, 2013, 1769-1775.
- [26] Vladoiu I., Stafe M., Negutu C., Popescu I.M., Nanopulsed ablation rate of metals dependence on the laser fluence and wavelength in atmospheric air, U.P.B. Sci. Bull. A, 70, 2008, 119-126.
- [27] Liu J.M., Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett. 7, 5, 1982, 196-198.
- [28] Czyż K., Marczak J., Major R., Mzyk A., Rycyk A., Sarzyński A., Strzelec M., Selected laser methods for surface structuring of biocompatible diamond-like carbon layers, Diam. Relat. Mater. 67, 2016, 26-40.
- [29] Nakamiya T., Aoqui S., Ebihara K., Experimental and numerical study on pulsed-laser annealing process of diamond-like carbon thin films, Diam. Relat. Mater. 10, 3-7, 2001, 905-909.
- [30] Roch T., Lasagni A., Beyer E., Nanosecond UV laser graphitization and delamination of thin tetrahedral amorphous carbon films with different sp3/sp2 content, Thin Solid Films, 519, 11, 2011, 3756-3761.
- [31] Lackner J.M., Waldhauser W., Ebner R., Fian A., Jakopic G., Leising G., Schoberl T., Pulsed laser deposition of silicon containing carbon thin films, Surf. Coat. Tech., 177-178, 2004, 360-364.
- [32] Marczak J., Rycyk A., Sarzyński A., Strzelec M., Czyż K., Nd:YAG dual-channel laser system with Q-modulation for direct interference lithography, Photonics Letts PL, 6, 1, 2014, 44-46.
- [33] Majkowska B., Jażdżewska M., Zieliński A., Marczak J., Sarzyński A., Strzelec M., Rycyk A., Czyż K., EMRS Fall Meeting 2014: http://www.emrs-strasbourg.com/index.php?option=com_abstract&task=view&id=284&year=2014&Itemid=&id_season=12&PHPSESSID=633883b1743e9ddf607fee432898b962.
- [34] Kwaśniak P., Pura J., Zwolińska M., Wieciński P., Skarżyński H., Olszewski L., Marczak J., Garbacz H., Kurzydłowski K.J., Laser and chemical surface modifications of titanium grade 2 for medical application, Appl. Surf. Sci., 336, 2015, 267-273.
- [35] Major R., Maksymow K., Marczak J., Migration channels produced by laser ablation for substrate endothelialization, Bull. Pol. Acad Sci-Te., 60, 2, 2012, 337-342.
- [36] Marczak J., Micromachining and patterning in micro/nano scale on macroscopic areas, Arch. Metall. Mater. 60, 3, 2015, 2221-2234.
- [37] Major R., Bruckert F., Lackner J.M., Marczak J., Surface treatment of thin-film materials to allow dialogue between endothelial and smooth muscle cells and the effective inhibition of platelet activation, RSC Adv. 4, 19, 2014, 9491-9502.
- [38] Scarritt M.E., Pashos N.C., Bunnell B.A., A review of cellularization strategies for tissue engineering of whole organs, Front. Bioeng. Biotech., 3, 2015, Article ID 43.
- [39] Wang W.S., Biomimetic calcium carbonate concentric microgrooves with tunable widths for promoting MC3T3-E1 cell functions, Adv. Healthcare Mater. 2, 2013, 326-333.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-600ca839-1e26-48cf-a796-0109ecbed920