PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane taksony glonów wykorzystywane w produkcji biopaliw

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Selected algae taxa used in the production of biofuels
Języki publikacji
PL
Abstrakty
PL
Koncepcja wykorzystania glonów jako surowca do produkcji biopaliw w ostatnich latach zyskuje na popularności w związku z rosnącymi cenami ropy naftowej, szybko malejącymi naturalnymi zasobami ropy, a także problemami z globalnym ociepleniem (spowodowanym spalaniem paliw kopalnych). Glony zawierają 20-70% lipidów i wykazują znaczny potencjał w uprawach jako organizmy energetyczne. Z glonów wytwarzane są różne biopaliwa, m.in.: biodiesel, bioetanol, biobutanol, metan i biogaz. Głównymi czynnikami wpływającymi na wzrost glonów są: dostępność i intensywność światła, temperatura, stężenie składników odżywczych i dostępność CO 2 . Hodowlę mikroglonów prowadzi się w systemach otwartych (stawach) lub zamkniętych (fotobioreaktorach), makroglony natomiast uprawiane są w strefie przybrzeżnej mórz lub w podobnych zbiornikach wodnych. Wśród mikroglonów taksonami produkującymi znacznie ilości oleju są m.in. Botryococcus braunii i Chlorella vulgaris, natomiast makroglonem powszechnie uprawianym i wykorzystywanym do produkcji biopaliw jest m.in. Macrocystis pyrifera.
EN
The concept of using algae as a raw material for biofuel production has been gaining popularity in recent years due to the surging cost of crude oil, the rapidly declining natural resources of oil, and issues related to global warming (caused by the burning of fossil fuels). Algae, characterized by lipid contents ranging from 20 to 70%, exhibit considerable potential as energy crops in cultivation. Various biofuels are produced from algae, including biodiesel, bioethanol, biobutanol, methane, and biogas. The main factors influencing algae growth are the availability and intensity of light, temperature, nutrient concentration, and CO 2 availability. Microalgae are grown in open systems (ponds) or closed systems (photobioreactors). Macroalgae, on the other hand, are cultivated in coastal zones of seas or similar aquatic reservoirs. Among microalgae, Botryococcus braunii and Chlorella vulgaris are taxa that produce significant amounts of oil, while the macroalgae commonly cultivated and used for biofuel production is Macrocystis pyrifera.
Twórcy
autor
  • Zakład Gleboznawstwa, Chemii Środowiska i Hydrologii, Uniwersytet Rzeszowski
Bibliografia
  • 1. Al-Lwayzy S.H., Yusaf T. 2017. Diesel engine performance and exhaust gas emissions using microalgae Chlorella protothecoides biodiesel. Renew. Energy. 101. 690-701.
  • 2. Al-Lwayzy S.H., Yusaf T., Al-Juboori R.A. 2014. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies. 7 (3). 1829-1851.
  • 3. Amaya Apaza K.M., Castaneda-Olivera C.A., Acosta Suasnabar E., Del Pilar Lopez Padilla R., Tomanguilla L.C., Benites Alfaro E. 2022. Biofuel obtained from benthic marine flora Macrocystis pyrifera and its characterization. Chem. Engineering Transactions. 92. 175-180.
  • 4. Aro E.-M. 2016. From first generation biofuels to advanced solar biofuels. Ambio. 45. 24-31.
  • 5. Banerjee A., Sharma R., Chisti Y., Banerjee U.C. 2002. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Rev. in Biotechnology. 22. 245-279.
  • 6. Blinová L., Bartošová A., Gerulová K. 2015. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Faculty of Materials Science and Technology in Trnava. 23 (36). 87-95.
  • 7. Błaszak M. 2014. The use of algae for energy: current state and perspectives. Archiwum Gospodarki Odpadami i Ochrony Środowiska. 16 (4). 141-152.
  • 8. Camus C., Ballerino P., Delgado R., Olivera-Nappa A., Leyton C., Buschmann A.H. 2016. Scaling up bioethanol production from the farmed brown macroalga Macrocystis pyrifera in Chile. Biofuels, Bioprod. Bioref. 10. 673-685.
  • 9. Carneiro M.L.N.M., Pradelle F., Braga S.L., Gomes M.S.P., Martins A.R.F.A., Turkovics F., Pradelle R.N.C. 2017. Potential of biofuels from algae: comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renewable and Sustainable Energy Reviews. 73. 632-653.
  • 10. Cheng P., Muylaert K., Cheng J.J., Liu H., Chen P., Addy M., Zhou C., Yan X., Ruan R. 2019. Cobalt enrichment enhances the tolerance of Botryococcus braunii to high concentration of CO2. Biores. Technol. 297. 122385. DOI:10.1016/j.biortech.2019.122385.
  • 11. Chisti Y. 2008. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology. 26. 126-131.
  • 12. Chye J.T.T., Jun L.Y., Yon L.S., Pan S., Danquah M.K. 2018. Biofuel production from algal biomass. [In:] Konur O. (ed.), Bioenergy and biofuels. CRC Press, Taylor & Francis Group, Boca Raton, pp. 87-120.
  • 13. Chynoweth D.P. 2002. Reviev of biomethane from marine biomass. Gainesville, Florida, USA. Department of Agricultural and Biological Engineering, University of Florida.
  • 14. Correa D.F., Beyer H.L., Possingham H.P., Thomas-Hall S.R., Schenk P.M. 2017. Biodiversity impacts of bioenergy production: microalgae vs. rst generation biofuels. Renewable and Sustainable Energy Reviews. 74. 1131-1146.
  • 15. Das V., Devi A., Das R., Kalita M.C., Deka D. 2019. Microalgal lipid augmentation of Chlorella sp. and algal biodiesel production using CaO as catalyst-A green outlook. J. Algal Biomass Utln. 10 (1). 43-53.
  • 16. Dębowski M., Zieliński M., Krzemieniewski M. 2011. Wydajność produkcji biomasy glonowej w reaktorze otwartym. Roczniki Ochrony Środowiska. 13. 1743-1752.
  • 17. Diesel J., Molano G., Montecinos G.J., De Weese K., Calhoun S., Kuo A., Lipzen A., Salamov A., Grigoriev I.V., Reed D.C., Miller R.J., Nuzhdin S.V., Alberto F. 2023. A scaffolded and annotated reference genome of giant kelp (Macrocystis pyrifera). BMC Genomics. 24. 543. https://doi.org/10.1186/s12864-023-09658-x.
  • 18. Dragone G., Fernandes B.D., Vicente A., Teixeira J.A. 2010. Third generation biofuels from microalgae. [In:] A. Mendez-Vilas (ed.), Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex, Portugal, pp. 1355-1366.
  • 19. FAO (Food and Agriculture Organization of the United Nations) 2009. Algae-based biofuels: a review of challenges and opportunities for developing countries. Italy, 49 pp.
  • 20. Gani P., Sunar N.M., Matias-Peralta H.M., Latiff A.A.A., Parjo U.K., Embong Z., Khalid A., Tajudin S.A.A. 2016. The potential of biodiesel production from Botryococcus sp. biomass after phycoremediation of domestic and industrial wastewater. IOP Conf. Ser.: Mater. Sci. Eng. 160. 012048. doi:10.1088/1757-899X/160/1/012048.
  • 21. Gaurav N., Sivasankari S., Kiran G.S., Ninawe A., Selvin J. 2017. Utilization of bioresources for sustainable biofuels: a review. Renewable and Sustainable Energy Reviews. 73. 205-214.
  • 22. Griffiths G., Hossain A.K., Sharma V., Duraisamy G. 2021. Key targets for improving algal biofuel production. Clean Technol. 3. 711-742.
  • 23. Hawrot-Paw M., Ratomski P., Koniuszy A., Golimowski W., Teleszko M., Grygier A. 2021. Fatty acid profile of microalgal oils as a criterion for selection of the best feedstock for biodiesel production. Energies. 14. 7334. DOI:10.3390/en14217334.
  • 24. Hossain F.M., Nabi M.N., Brown R.J. 2019. Investigation of diesel engine performance and exhaust emissions of microalgae fuel components in a turbocharged diesel engine. Energy Convers. Manag. 186. 220-228.
  • 25. Jackson B.A., Bahri P.A., Moheimani N.R. 2017. Repetitive non-destructive milking of hydrocarbons from Botryococcus braunii. Renew. Sustain. Ener. Rev. 79. 1229-1240.
  • 26. Kawamura K., Hirano K., Ardianor, Nugroho R.A. 2020. The oil-producing microalga Botryococcus braunii: a method for isolation from the natural environment and perspectives on the role of ecological studies in algal biofuel production. Journal of Ecosystem and Ecography. 10 (3). 274.
  • 27. Kozieł W., Włodarczyk T. 2011. Glony – produkcja biomasy. Acta Agroph. 17 (1). 105-116.
  • 28. Kuo C.-M., Sun Y.-L., Lin C.-H., Lin C.-H., Wu H.-T., Lin C.-S. 2021. Cultivation and biorefinery of microalgae (Chlorella sp.) for producing biofuels and other byproducts: a review. Sustainability. 13. 13480. https://doi.org/10.3390/su132313480.
  • 29. Lavoie J.-M. 2016. Implementing 2nd generation liquid biofuels in a fossil fueldominated market: making the right choices. Current Opinion in Green and Sustainable Chemistry. 2. 45-47.
  • 30. Leite G.B., Abdelaziz A.E.M., Hallenbeck P.C. 2013. Algal biofuels: challenges and opportunities. Bioresource Technology. 145. 134-141.
  • 31. Lomeu A.A., de Mendonça H.V., Mendes M.F. 2023. Microalgae as raw material for biodiesel production: perspectives and challenges of the third generation chain. Engenharia Agrícola. 43. e20220087. Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v43nepe 20220087/2023.
  • 32. Mahmooda T., Hussain N., Shahbaz A., Mulla S.I., Iqbal H.M.N., Bilal M. 2023. Sustainable production of biofuels from the algae‑derived biomass. Bioprocess and Biosystems Engineering. 46. 1077-1097.
  • 33. Maity J.P., Bundschuh J., Chen C.-Y., Bhattacharya P. 2014. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy. 78. 104-113.
  • 34. Metzger P., Largeau C. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66. 486-496.
  • 35. Naik S.N., Goud V.V., Rout P.K., Dalai A.K. 2010. Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews. 14. 578-597.
  • 36. Narala R.R., Garg S., Sharma K., Schenk P.M. 2016. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Frontiers in Energy Research. 4 (29). 1-10.
  • 37. Noga T., Kochman-Kędziora N. 2023. Mikroglony najczęściej wykorzystywane w przemyśle rolno-spożywczym. Polish Journal for Sustainable Development. 27 (1). 23-35.
  • 38. Nugroho R.A., Subagyono D.J.N., Arung E.T. 2020. Isolation and characterization of Botryococcus braunii from a freshwater environment in Tenggarong, Kutai Kartanegara, Indonesia. Biodiversitas. 21 (5). 2331-2336.
  • 39. Nwanya K.O., Okoye P.A.C., Ajiwe V.I.E. 2021. Biodiesel potentials of Chlorella vulgaris oil. Nigerian Research Journal of Chemical Sciences. 9 (2). 36-46.
  • 40. Patyna A., Witczak S. 2016. Przegląd fotobioreaktorów do produkcji biodiesla. Chemik. 70 (10). 634-643.
  • 41. Posten C., Shaub G. 2009. Microalgae and terrestrial biomass as source for fuel – a process review. Journal of Biotechnology. 142. 64-69.
  • 42. Rassweiler A., Reed D.C., Harrer S.L., Nelson J.C. 2018. Improved estimates of net primary production, growth, and standing crop of Macrocystis pyrifera in Southern California. Ecology. 99 (9). 2132-2132.
  • 43. Rosiak E., Łopaciuk W., Krzemiński M. (red.) 2011. Produkcja biopaliw i jej wpływ na światowy rynek zbóż oraz roślin oleistych i tłuszczów roślinnych. Wyd. Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej – Państwowy Instytut Badawczy. Warszawa. 119 pp.
  • 44. Saladini F. Patrizi N., Pulselli F.M., Marchettini N., Bastianoni S. 2016. Guidelines for emergy evaluation of first, second and third generation biofuels. Renewable and Sustainable Energy Reviews. 66. 221-227.
  • 45. Sheehan J.T., Dunahay J., Benerman H., Roesslev P. 1998. A look back at the U.S. Department of Energy’s Aquatic Species Program – Biodiesel from Algae prepared for U.S. Department of energy’s office of fuels Development, by National Renewable Energy Laboratory. New York, pp. 42-48.
  • 46. Tan K.W.M., Lee Y.K. 2016. The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. Biotechnol Biofuels. 9 (1). 255. https:// doi. org/ 10. 1186/ s13068- 016- 0671-2.
  • 47. Tanabe Y., Okazaki Y., Yoshida M., Matsuura H., Kai A., Shiratori T., i in. 2015. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii. Scientific Reports. 5. 10467. DOI: 10.1038/srep10467.54
  • 48. Ugwu C.U., Aoyagi H., Uchiyama H. 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology. 99. 4021-4028.
  • 49. Ullah K.A., Ahmad V.K., Sofia, Sharma V.K., Lu P., Harvey A., Zafar M., Sultana S. 2015. Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel. 143. 414-423.
  • 50. Urbina-Suarez N.A., Barajas-Solano A.F., Garcia-Martinez J.B., Lopez-Barrera G.L., Gonzalez-Delgado A.D. 2021. Cultivation of Chlorella sp. for biodiesel production using two farming wastewaters in eastern Colombia. Journal of Water and Land Development. 50 (6-9). 141-149.
  • 51. Xu N., Zhang X., Fan X., Han L. 2001. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Chlorella vulgaris sp. Journal of Applied Phycology. 13. 463-469.
  • 52. Zhang J., Chen W.T., Zhang P., Luo Z., Zhang Y. 2013. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. Bioresource Technology. 133. 389-397.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6009ee06-3b20-4d3d-816a-6b839d3fdf41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.