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ABSTRACT 

We study and explain the uncertainty principle. We've discussed how to reform the uncertainty 

principle. In this regards, we have used the mechanisms of noncommutative algebra for obtain a 

generalized uncertainty principle. Following, Due to modified relationship uncertainty, we consider 

some application of these relation. 
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1.  CLASSICAL UNCERTAINTY RELATIONS  

 

We consider a wave as 1 siny y kx . This wave continues from x   to x   , 

consistently. The position of this wave can not be determined precisely, but its wavelength is 

precisely determined and we get: 
2

k


  [1] . 

If we want to use the wave in order to show a particle, its position must precisely be 

determined. In fact the wave must be localized. Or could be limited in analmost short area of the 

space .Now if we add another wave with a different wavelength to the initial wave , these two 

waves act together and we get to the conjunction of waves.      

In this case another wave would be produced, that it would continues consistently again 

from x   to x   , but we can determine its position more with details , because in some 

positions wave's wavelength is different. In fact beat occurs because of conjunction of waves .  

Consequently the possibility of storm increases for some numbers of x. 

So we would have more information about wave's position, but as a result of adding two 

wavelengths, the initial wavelength is not accurately defined. 

Now if we add more waves with different wavelengths and accurate amplitudes and 

phases, so we'll have a wave which practically has no amplitude outside of an almost narrow 

area of the space. According to this purpose we have added many waves with different 

wavelengths, ik , so the wave would be a demonstration of the average of wave numbers (or 

wave lengths) shownas k . When we have only a single wave, 0k  , and x is unspecified, 

by increasing k , x decreases; it means the wave becomes more limited. So there is a 
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contrary relation between k and x ; a relation such as 

 

1x k                                  1-1 

 

It means x times k is of the order of one. So the position of any kind of waves can 

only be determined by decreasing the accuracy of measuring its wavelength.The 1-1 relation is 

the first classical uncertainty relation for classical waves. Yang's experiment is one of reversal 

examplesof the ability to measure the place and wavelength in the same time. In a way that 

weather we can find out which gap the wave has crossed through, or to measure crossed 

photons. Now if we want to use eq.(1-1) uncertainty relation for dobro wave; the fundamental 

relation of dobroi is as : 
h

p


  , using 
2

h
h


 and 

2

hk
p


  we get :   

  
p

k
h


                                                      2-1                       

So using eq. (1-1) uncertainty relation we get;     x p h               3-1 

Eq. (3-1) is Heisenberg uncertainty relation. 

Indeed it's the mathematical present of Heisenberg uncertainty principle which states that; 

it's impossible to determine the position and momentum of a particle,simultaneously. 

The Heisenberg Energy _ time uncertainty principle is considered as: 

 

                       E t h                                4-1 

 

and states that it's impossible to determine the energy and the coordinate of the time of a 

particle, simultaneously. 

 

 

2.  UNCERTAINTY PRINCIPLES 

 

There are observables that have compatible Eigen states, (i.e. Hermitian operators, A and 

B with [A,B] = 0 commutator.). These are commuting observables because of their commuting 

relation, for example if we consider A and B (Hermitian operators) with [A,B] = 0, they have 

compatible Eigen states and so a determinate state of A might also be a determinate state of B. 

But does this always come true? 

We know that operators such as x, p, H do not commute, so we can conclude that 

measuring one thing doesn't always denote to the measuring of any thing else. Although 

sometimes it happens. So we can determinate the uncertainty principles in such 

measurementexperimentally, that these principles would be built in mathematical formulation. 

We only can measure transition from one state into another. The different states of a system 

cannot be measured even though they ever existed.  

 

2. 1. Uncertainty Relations  

 

We want to relate variances to the commutativity relations between two operators. 

Weconsider the operator Q . Q Q Q   . Then the variance of Q would be as 〈(ΔQ)
2〉 

defined below [2]:  
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22 2 2 2( ) ( )Q Q Q Q Q Q Q Q Q               2-1      

 

We consider two Hermitian operators P and Q .And then we define operator P Q  that 

could be written as; 

 

   
1 1

, ,
2 2

P Q P Q P Q                             2-2      

 

Since Pand Q are Hermitian their commutator is anti-Hermitian, and their 

anti-commutator is Hermitian.                   

Now we consider the expectation value of P Q   

   
1 1

, ,
2 2

P Q P Q P Q                        2-3   

 

Now we know that Hermitian operators have real expectation values, and anti-Hermitian 

operators have imaginary values. So the expectation value of  ,P Q commutator is imaginary 

and the expectation value, then the right hand side of eq. (2-3) could be considered asu iv . So 

the magnitude squared of both sides gives: 

 

   
2 22 1 1

, ,
4 4

P Q P Q P Q                      2-4 

 

Using Schwarzinequality, we get; 

{Schwarz inequality:
2

,a b a a b b a b   }     

 

We assume   a P x      and    b Q x   ,      

 

Then 

   
2 222 2 22 2 1 1

( ) ( ) , ,
4 4

a a b b P x x Q x x P Q P Q P Q P Q P Q                 2-5 

 

The term on the left side is;
2 2

P Q  , (if the variance of p that we considered as P is 

equals to P and the variance of Q we considered as Q is equals to Q ) so we get:      

 
2

2 2 1
,

4
P Q P Q                                 2-6     

 

Since both terms on the right side of eq. (2-5) are positive, dropping the anti-commutator 

only strengthens the inequality, so it could be denied. 

This gives us a limit on the variance of the P or Qoperator. Now if  , 0P Q   ,the two 

Hermitian operators commute with each other and determined states are shared, it means that 

we can measure property P and Qsimultaneously. 
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The commentator relation between x and p is considered as:  ,x P i
 
So we can write 

the position – momentum uncertainty relation as: 

 
2

2 2

4 2
x P x P

h h
                                      2-7  

 

This relation is supposed to hold for any state. We consider the example of harmonic 

oscillator as for checking out validity of the eq. (2-7) 

We got the variance of x for the Eigen state n :     

2 (2 1)

2
x

n

m





      

The variance of the momentum operator is considered as; 

             ( )
2

P

m
P i a a


      

So we get; 

2 2 2 ( ) (2 1)
2 2 2

m m m
n P n n a a a a a a n n a a n n a a n n

  
                   

 

Then:                     
2 2

2 2 (2 1)

4
x P

n
 


                          2-8   

 

and for 0n  , the ground state, we actually achieve the lower band that we see it consists with 

the basic position – momentum uncertainty relation. In classical mechanics, the time derivative 

of a function ( , , )J x p t  could be written as;   

 ,
dJ J

J H
dt t


 


                               2-9    

The definition of the Poisson bracket is considered as; 

 

 ,
H J J H

H J
x P x P 

 

   
 
   

                                     2-10    

 

and the Hamiltonian equations of motion: 

 

H
P

x
 


 



H
x

P









               2-11 

So the total time derivative is; 

 

 ,
dJ J J J J H J H J J

x P J H
dt x P t x P P x t t



  

  

        
       
        

            2-12  
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This relation is used, when J is not explicitly a function of time. Consider an operator 
ˆ ( , , )Q x p t  then the total time derivative of its expectation value is [3]: 

 

ˆ
ˆ ˆ ˆd Q

Q Q Q
dt t

       


  


                      2-13    

with  
d

dt
  . 

 

We know from Schrodinger's equation, that    

    

d
i H i H

dt
                                         2-14 

 

So inputting this into the total time derivative of Q gives;  

 

ˆ ˆ1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ,
d Q Q

Q HQ QH Q H
dt i t i i t

     
 

      
  

               2-15   

 

This result can be used to calculate the time-dependence, in particular, if we take Q = p, 

we recover Ehrenfest's theorem. Now, we consider the relation (2-15), considering the original 

uncertainty principle and that we know there is no explicit time – dependence and with   
ˆˆ &P H Q Q    

 

 

2

2
2

2 2

ˆ
1

,
4 4

H Q

d Q
H Q

dt
                                             2-16   

 

In fact we define a deviation as; 

 

ˆ ˆ ˆ

2 2

ˆ

H H H Q H

Q

d Q d Q d Q
t t t

dt dt dt

d Q
t

dt

    



       

 
          2-17  

So ∆t is a natural time scale induced by the measurement properties of the operator 
ˆ ( , )Q x p . If we refer to the standard deviation of the Hamiltonian as  

 

∆E.
2

h
E t        2-18. 
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This is called the "energy-time" uncertainty relation. It relates the spread in energy to the 

time. 

 

 

3.  THE ALGEBRAIC STRUCTURE OF THE GENERALIZED UNCERTAINTY  

    PRINCIPLE    

 

Measurements in quantum gravity are controlled by a generalized uncertainty principle 

[4]. 

 

.
h

x cst G P
P

   


                                      3-1  

 

(G is Newton's constant). At energies much below the Planck mass MPL the extra term in 

eq.(1-4) is irrelevant and the Heisenberg relation is recovered. It is responsible for the existence 

of a minimal observable length on the order of the Planck length. 

The result (1-4) was first suggested in the context of string theory in the kinematical 

region where 2GE is smaller than the string length. However, heuristic arguments suggest that 

this formula might have a more general validity in quantumgravity, and it is not necessarily 

related to strings. It is there for natural to ask whether there is an algebraic structure which 

reproduces eq. (1-4). (Or more in general which reproduces the existence of a minimal 

observable length). So to obtain generalized uncertainty relations we define a new algebra.  

The commutator [x, p] = ih controls the algebra used in obtaining Heisenberg uncertainty 

principle. But with this commutator relation the extra term in eq. (1-4) won't be reproduced; so 

we look forward an algebra which produces this extra term. So we need deformated algebra 

because eq. (1-4) would not recover by using the mentioned algebra. 

Deformated algebra is an associative algebra where it is defined a commutator which is 

non-linear in the elements of the algebra; and there is a deformation parameter such that, in an 

appropriate limit, a Lie algebra is recovered. We therefor look for the most general deformed 

algebra which can be constructed from coordinates xi and momenta pi(I = 1,2,3). We restrict 

making the following assumptions. 

 
1. The three dimensional rotation group is not deformed; the angular momentum J satisfies the 

undeformed SU(2) commutation relations, and coordinate and momenta satisfy the undeformed 

commutation relations: , & ,i j ijk k i j ijk kJ P i P J x i x          

 

2. The momenta commutes between themselves: , 0i jP P     

So that also the transition group is not deformed. 

 

3. The [x,x] and [ x,p] commutators depend on a deformation parameter k with dimensions of 

mass. In the limit k→∞ (that is,k much larger than any energy), the canonical commutation 

relations are recovered. The commutator between x's is non-zero. If k~Planck mass the 

non-commutativity shows up only at the levels of the Plancklength.With these assumptions, the 

most general form of the κ-deformed algebra is; 
2

2

( )
,i j ijk k

a E
x x i J


                      3-2  
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, ( )i j ijx P i f E                            3-3    

 

Here a (E) and f (E ) are real, dimensionless  functions of E/k, and E
2 

= p
2 

+ m
2
; the 

angular momentum J is defined as dimensionless, so on the right hand side the dimensions are 

carried by  and k only. The fact that this is the most general form compatible with our 

assumptions is clear from the following considerations: the factors of iare determined by the 

condition of hermiticity of xi,pi and Ji. The tensor εijk in eq. (3-2) appears because we assume 

that the three dimensional rotation group is undeformed and then it is the only tensor 

antisymmetric in i, j.   

A term proportional to xipj-xjpimight also be added to the right hand side of eq. (3-2). In 

the second equation, again δij must appear because it is the only available tensor under rotation. 

In order to recover the undeformed limit, we further require that f(0) = 1 and that a (E ) is less 

singular than E
-2

as E→0. We neglect the possibility that the functions a,f depend on also other 

scalars like x
2
or x.p .                 

Of course the form of functions a(E ), f(E ) is severely restricted by the Jacobi identities. 

We consider first the Jacobi identity; 

 

, , 0i j kx x x cyclic      
 . Using  , ( ) i

i

P
x E i f E

E
 , and 

 , ( ) ( )( )i
i

P da
x a E i f E

E dE
    we get :        . 0

da
P J

dE
                    3-4    

  

Since the Jacobi identity must be satisfied independently of the particular representation 

of the algebra, that is independently of wether the condition p. J = 0 holds or not, we conclude 

that a(E ) = constant. with a redefinition of k we can set this constant to ±1 .          

The Jacobi identity , , 0i j kx x P cyclic      
 gives  

   

2

( ) 1f E df

E dE 
                                     3-5    

 

where the negative and positive signs correspond to the choice a = +1(-1). Since f(0) = 1, eq.  

(3-5) gives ; 
12

2
2

( ) (1 ( ))
E

f E
k

                     3-6 

All other Jacobi identities are automatically satisfied. So  

i) there exists a solution: we can have a deformated algebra that it turns to Heisenberg 

algebra under limited conditions. 

ii) Thesolution is unique .(within our assumptions)     

Now we only consider the positive sign and rewrite the k-deformed Heisenberg algebra as: 

2

2
,i j ijk kx x i J


                               3-7 

12

2
2

, (1 )i j ij

E
x p i 


                              3-8    
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The generalized uncertainty principle is derived from eq.(8-4) as;     

  
12

2
2

(1 )
2

i j ij

E
x P 


                               3-9     

 

Expanding the square root in powers of (E/k)
2
 and using 2 2 2( )P P P    where 

2 2( ) (P )P P    , at first order we obtain;   

    
2 2

2

( )
(1 )

2 2
i j ij

E P
x P 



 
                           3-10    

 

(1+E
2
/k

2
) could be considered as a function named f and the generalized uncertainty principle 

simplifies as;   

   

x
2

i j ijp f                                     3-11     

 

 

4.  AN APPLICATION OF THE GENERALIZED UNCERTAINTY PRINCIPLE   

(The generalized uncertainty principle and black holeremnants) 

Small black holes are believed to emit blackbody radiation at the Hawking temperature, 

at least until they approach Plancksize. A small black hole should emit black body radiation, 

there by becoming lighter and hotter, and so on, leading on to an explosive end when the mass 

approaches zero. Does a small black hole evaporate entirely to photons and other ordinary 

particles and vacuum, or would something be left behind, which we refer to as a remnant [5-35]. 

Since there is no evident symmetry or quantum number preventing it, a black hole should 

radiate entirely away to photons and other ordinary stable particles and vacuum, just like any 

unstable quantumsystem. The total collapse of a black hole may be prevented by dynamics, and 

not by symmetry. Just as we may consider the hydrogen atom to be prevented from collapse by 

the uncertainty principle. The generalized uncertainty principle may prevent a black hole from 

complete evaporation. The uncertainty principle argument for the stability of the hydrogen 

atom can be stated very briefly. The energy of the electron is p
2
/2m-e

2
/r , so the classical 

minimum energy is very large and negative, since p = r = 0 , the result is not compatible with 

the uncertainty principle.  

If we assume that 
h

P
r

 we see that;
2 2

22

h e
E

mr r
  thus 

42

min min2 2
&

2

h me
r E

me
  

which means the energy has a minimum. 

The (GUP) gives the position uncertainty as  

   

2

3
&p P

h P G
x L L

P h c


   


                                    4-1  

     

This is a result of string theory or more general considerations of quantum mechanics and 

gravity. The usual Heisenberg argument leads to an electron position uncertainty given by the 
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first term of 4-1. But we should add to this a term due to the gravitational interaction of the 

electron with photon, and that term must be proportional to G times the photon energy, or Gpc.  

Since the electron momentum uncertainty ∆p will be of the order of p, we see that on 

dimensional grounds the extra term must be of order G∆p/c
3
, as given in 4-1.   

The position uncertainty has a minimum value of ∆x = 2Lp, so the Planck distance plays 

the role of a minimum or fundamental distance.But the generalized uncertainty principle may 

prevent a black hole from complete evaporation. One of the applications of the generalized 

uncertainty principle is that using this we may get to the Hawking temperature of a spherically 

symmetric black hole or its general properties. There is quantumvacuum around a black hole, 

which meas that a fluctuating sea of virtual particles, near the surface of a black hole the 

effective potential energy can negate the rest energy of a particle, and the surface itself is a 

one-way membrane which can swallow particles.  

The net effect is that for a pair of photons one photon may be absorbed by the black hole 

with effective negative energy –E, and the other may be emitted to asymptotic distances with 

positive energy +E . The characteristic energy E of the emitted photons may be estimated from 

the standard uncertainty principle. In the vicinity of the black hole surface there is an intrinsic 

uncertainty in the position of any particle of about the Schwarzschildradius, rs, due to the 

behavior of its field lines. So the momentum uncertainty would be as; 

 
2

2

2
&

2 4
s

s

h h c GM
P x r

x r GM c
      


                      4-2    

 

and the energy uncertainty is 
3

4

c
pc

GM
                        4-3 

  

This is the energy of the emitted photon. and the Hawking temperature would be as; 

 
2 33

,
8 8

P
H P

M cc c
T M

GM M G 
                                  4-4      

 

we show that the emitted photons should have a thermal black body spectrum. From (4-1) we 

solve for the momentum uncertainty in terms of the distance uncertainty. This gives the 

following momentum and temperature for radiated photons; 

 

2

2 2

4
1 1

2

P

P

LP x

h L x

  
  

  

                                        4-5  

 

22

2
1 1

4

P
GUP

MMc
T

M

 
  

  

                                       4-5        

 

 

5.  CONCLUSIONS 

 

We shown that a deformation of the algebra commutator (base of physics effects) which 

depends on a dimensionful parameter lead to the generalized uncertainty principle in quantum 
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gravity. We know that the deformed algebra and therefore the form of the generalized 

uncertainty principle are fixed uniquely by rather simple assumptions. In this regard, we can use 

this mechanism for study other physics subjects such as Black hole. 
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